
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Studying the Interplay between the Durations
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Abstract—The Continuous Integration (CI) practice allows developers to build software projects automatically and more frequently.
However, CI builds may undergo long build durations or frequent build breakages, which we refer to as build performance. Both long
durations and frequent breakages of CI builds can impede developers from engaging in other development activities. Prior research has
conducted independent studies on build durations or build breakages. However, there is little attention to the possible interplay between
reducing build durations and build breakages. In particular, it is unclear from prior studies (i) whether and how build performance is
influenced by the context of projects; (ii) whether the actions to reduce build durations would reduce or increase build breakages; and
(iii) whether fixing build breakages would lead to longer or faster builds. It is important for developers to understand the practices that
make both timely and passing CI builds. In this paper, we conduct experimental and survey studies on the practices that can have dual
or inverse associations with two build performance measures: build durations and build breakages. To this end, we extend an existing
dataset called TRAVISTORRENT to exclude inactive projects and collect recent builds of active projects. As a result, we study 924, 616

CI builds from 588 GITHUB projects that are linked with TRAVIS CI. In addition, we survey developers who contributed to the projects
in our dataset to get their feedback on our experimental observations. First, we investigate project-level metrics and find that project
characteristics have a significant association with build durations and breakages. In addition, we investigate how build-level metrics
are associated with both build durations and breakages and observe an evident interplay between them. In particular, we observe that
actions to fix build breakages (e.g., retrying or waiting for build commands) not only increase build durations but also do not guarantee
passing builds. We also find that improving the build performance of a project is dependent on the current build durations and breakages
of that project. Furthermore, we analyze how build performance changes over time and observe nearly a third of projects in which
one performance measure is sacrificed in favor of the other, especially when not possible to achieve both together. The majority of our
experimental observations are confirmed by survey results, which provide useful insights though some survey responses disagree with
some of our experimental observations. Our work (a) provides developers with development and building practices to maintain timely
and passing CI builds, and (b) encourages researchers to highlight any potential dual or inverse side effects when reporting actionable
findings about CI builds.

Index Terms—Continuous Integration (CI); Build performance; Build duration; Build breakage; Empirical software engineering; Mining
software repositories; Questionnaire survey
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1 INTRODUCTION

CONTINUOUS INTEGRATION (CI) is a development prac-
tice that allows software developers to run software

builds automatically and more frequently. Software devel-
opers adopt CI to obtain early feedback on the changes
submitted to the code base [1]. With CI builds, developers
are more concerned about build durations and build breakages,
which we refer to as build performance. The build duration
is the time a build takes to run. The build breakage is an
indication that a build has not completed successfully (e.g.,
due to errors or failures).

Long build durations and frequent build breakages in-
troduce overhead to the software development process.
Waiting until a build completes and fixing build errors
or failures, in the case of build breakages, may impede
developers from engaging in other development activi-
ties [2]. Moreover, CI resources can be excessively consumed
if builds take longer or are re-triggered more than once
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after fixing build breakages [3]. Therefore, it is important
to understand the best practices that enable developers to
maintain both timely and successful builds.

Prior research has conducted independent analyses on
either build durations or build breakages. Previous studies
have investigated the impact of long build durations on
software development [4–6] and proposed recommenda-
tions to reduce the build duration [5, 7–9]. Previous studies
have also proposed approaches to model and predict build
breakages [10–13]. Recent studies [14, 15] have performed
independent analyses to study the evolution and frequency
of build durations and build breakages in software projects.

Despite the valuable insights provided by prior research,
little is known about the possible interplay between reduc-
ing build durations and fixing build breakages. In particular,
it is unclear from prior studies (i) whether and how build
performance is influenced by the context of projects; (ii)
whether the actions to reduce build durations cause more
or fewer build breakages; and (iii) whether fixing build
breakages leads to longer or faster builds. Developers tend
to fix build breakages regardless of the possible negative
impact on build durations (e.g., by increasing the build time
limit to avoid timeout-related build breakages1). Therefore,

1. https://github.com/travis-ci/travis-ci/issues/3031

https://github.com/travis-ci/travis-ci/issues/3031
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it is important for developers to understand the potential
dual or side effects when taking actions to optimize CI
builds (i.e., reduce build durations or fix build breakages).

In this paper, we conduct both experimental and survey
studies on the practices that can have dual or inverse asso-
ciations with two build performance measures: build durations
and build breakages. First, we extend an existing dataset
called TRAVISTORRENT [16], in which the last build was
dated on August 31, 2016. To do this, we exclude inactive
projects and collect recent builds of active projects until
July 2020, which resulted in 924, 616 CI builds from 588
GITHUB projects linked with TRAVIS CI. In addition, we
survey 139 developers who contributed to the projects in
our dataset to get their feedback on our experimental ob-
servations. To model the interplay between the two build
performance measures, we use build durations and build
breakage ratios as dimensions to group the studied projects
into four quadrants (or states): dominantly timely/passing,
dominantly long/passing, dominantly timely/broken, and domi-
nantly long/broken. Then, we perform project-level and build-
level analyses of each quadrant to explore factors associated
with build durations and breakages. For each experimental
observation, we seek justifications from survey respondents
(i.e., software developers with CI experience) about whether
and why they agree or disagree with the observation.
Research Questions (RQs). We study the interplay between
build durations and build breakages by addressing the
following exploratory research questions:

RQ1: What project characteristics are associated with
build performance? Previous studies report inconsistent
findings on CI builds [17, 18]. However, little is known
about whether the characteristics of projects are associated
with build performance. Our analysis of 18 project-level
metrics shows that the project context (e.g., being a large
and active project with extensive tests and configuration)
has a strong association with build performance, which
is confirmed by about half of the survey respondents. As
suggested by survey respondents, developers are encour-
aged to change build configuration only when needed (e.g.,
to optimize or fix problems related to build performance).
Survey responses suggest to “Never change a winning horse”
and “If it ain’t broke, don’t fix it”. Researchers on CI should
also pay careful attention to the differences between projects
when studying build durations and build breakages.

RQ2: What build-level metrics are significantly associated
with build durations and/or breakages? Previous research
has paid little attention to the metrics that are associated
with both build durations and build breakages. In this RQ,
we model each quadrant with respect to the other quadrants
using 40 build-level metrics and verify the results with
those obtained from the developer survey. We find that both
experimental and survey results suggest that workarounds
(e.g., command retrials) should be avoided and developers
should rather fix actual causes of build issues. However,
there is some level of discrepancy, especially for factors
having non-obvious associations with build performance
(e.g., multi-architecture). Moreover, inconsistent with our
experimental results, survey respondents do not see that
less experienced developers break fewer builds unless the
changes made are not much impactful.

RQ3: What actions should developers take to optimize
build performance? When projects encounter long build du-
rations and/or build frequent breakages, developers need
to act toward optimizing CI builds. In this RQ, we explore
the possible actions that developers can take to improve
build performance. We observe that CI factors (e.g., build
configurations and server workload) are more associated
with build performance than development factors (e.g.,
change complexity). However, one size does not fit all (i.e.,
a CI feature might perform inconsistently across projects).
This means that actions to improve the build performance
of a project is dependent on where that project stands in
terms of build duration and frequency of build breakages.
While survey respondents disagree with some experimental
observations (e.g., caching rather introduces more break-
ages), they confirm that there is a possible trade-off between
optimizing build durations and fixing build breakages, thus
alarming developers to be more careful when dealing with
different alternatives of build configurations.

RQ4: How frequently does build performance change over
time? Experiencing ups and downs in the build perfor-
mance of a project at a certain point in time can indicate a
change to the development process. In this RQ, we identify
nine patterns in which projects may undergo changes to
build performance. We find that projects may encounter
ups and downs in the build performance over time, but as
survey respondents confirm, changes in build performance
may not happen for every code change. Nearly a third of
projects sacrifice one performance measure in favor of the
other, especially when not possible to achieve both together.
Changes in build performance are mainly attributed to
changes in development practices, such as involving contri-
butions from developers with external expertise. Developers
should constantly explore ways to improve CI builds that
are commonly adopted by other projects.

In summary, our experimental results show an evident
interplay between build durations and breakages, with dual
or inverse side effects. The majority of our experimental
observations are confirmed by survey results, which pro-
vide useful insights though some survey responses disagree
with some of our experimental observations. In particular,
improving CI builds is contingent on the context of a project
and where it stands in terms of build performance. We high-
light our key findings in relation to the interplay between
build durations and breakages and discuss their implica-
tions for developers, researchers, and CI service providers.
Feedback from survey respondents indicates that, though
build performance could be improved using workarounds,
developers should instead focus on addressing the root
causes of CI build problems.

Overall, this paper makes the following contributions:

• We extend a publicly available dataset of CI builds,
called TRAVISTORRENT (last build dated on August 31,
2016), to include CI builds till July 17, 2020. We make
the updated dataset publicly available [19].

• We conduct a qualitative study using a user survey of
139 developers to help verify our quantitative findings
on the interplay between the durations and breakages
of CI builds. The survey results help us justify our
findings and understand their practical implications.
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• We characterize the project-level build performance by
modeling the interplay between build durations and
breakages. Project-level characteristics help developers
understand the best CI practices that suit their projects.

• We highlight the factors associated with build durations
and breakages with side effects. Our developer survey
further verifies the experimental observations and pro-
vides insights into their impact in practice.

• We identify the patterns of build performance changes
over time, and the factors associated with such changes.
Survey respondents agree that ups and downs in build
performance are common in practice.

Paper organization. The rest of this paper is organized as
follows. Section 2 provides background about CI. Section 3
describes the experimental setup of our study. Section 4
presents the results and findings of our studied RQs. Sec-
tion 5 discusses the implications of our findings. Section 6
presents threats to the validity of our results. Section 7
reviews the related literature on CI builds. Finally, Section 8
concludes the paper and suggests possible future work.

2 BACKGROUND
Continuous Integration (CI) allows developers to generate
software builds automatically and more frequently and get
early feedback on their code changes [1]. CI builds are
triggered when commits are pushed to a remote repository
or via pull requests. CI build process starts by fetching the
source code from the remote repository to the CI server,
installing the dependencies, building the production code,
and then running unit/integration tests. Builds pass if
all phases run successfully or fail if errors are encoun-
tered. TRAVIS CI2 and CIRCLECI3 are examples of GITHUB-
compatible CI services.

TRAVIS CI is a cloud-based CI service that is widely
adopted by GITHUB projects [20]. TRAVIS CI maintains a
customizable build lifecycle consisting of two main build
phases (i.e., install and script) and an optional deploy
phase. In the install phase, the remote repository is
cloned and all dependencies are installed. In the script
phase, the software is built and tests are run. In the deploy
phase, the software is packaged and deployed to a contin-
uous deployment provider. TRAVIS CI allows developers to
customize the building process through a configuration file
(i.e., .travis.yml). For example, developers can configure
the CI building machine (e.g., specifying the operating sys-
tem), tune parameters (e.g., timeout threshold), and enable
CI features (e.g., CI caching).

Builds in TRAVIS CI can run multiple independent jobs
in parallel or in sequence. A CI build (and each build job)
may have one of the following status indicators: started,
passed, errored, failed, or canceled. A CI build (or a build job)
is passed if all the build phases are successful. CI builds may
break if any of the build phases or build jobs is errored
or failed. The errored status indicates a problem with the
install, whereas the failed status indicates a problem with
the script phase. The canceled status indicates that the
build is manually interrupted. We refer to builds that have

2. https://travis-ci.org
3. https://circleci.com

an errored or failed status as broken builds. A breakage in one
build job breaks the entire build. However, marking a build
job as allow failures leaves the CI build status unaffected
when that job is broken. A build is normally marked as
finished if all its jobs are completed, but it can be configured
with fast finish to finish as soon as a job has already failed
or only remaining jobs are allowed to fail.4

3 EXPERIMENTAL SETUP

This section presents the setup of our empirical study.
We explain how we collect and process the data for our
studied RQs and how we perform a survey study to support
experimental observations.

3.1 Data Collection
Figure 1 shows an overview of our study. Our study is based
on data collected from TRAVISTORRENT [16], a commonly
used dataset to study CI builds [11, 21, 22]. TRAVISTOR-
RENT contains builds from 1, 283 projects: 886 Ruby, 393
Java, and 4 JavaScript projects. We exclude the 4 JavaScript
projects, since they are not a representative sample of the
JavaScript language. The last build in TRAVISTORRENT was
triggered in August 31, 2016. Hence, we update the TRAV-
ISTORRENT dataset by collecting recently triggered builds
up to July 17, 2020. We exclude the projects that (a) are no
longer available in GITHUB, (b) stopped using TRAVIS CI,
or became less active (i.e., having less than 50 builds [16]
during the updated period). As a result, we obtain 588
projects that actively use TRAVIS CI. We update the list of
builds for each of those projects using TRAVIS CI API5 and
collect the corresponding build metrics from GHTORRENT.6

We exclude started and canceled builds, since they are in-
complete. In total, our updated dataset contains 924, 616
builds. These builds span across various project branches,
with main branches having the majority (72%) of all builds
in our dataset.

For each build, we compute the actual build duration
by taking the difference between the build start and finish
time [9]. Prior CI research considers both errored and failed
builds as broken [10, 13, 21, 23]. Hence, we consider all build
breakages in the dataset equally regardless of being errored
or failed. Moreover, our study assumes all build breakages to
be deterrents, since they make developers wait for whoever
broke the build to fix it, thus delaying software releasing.
Therefore, we disregard the fact that some breakages might
be desirable (e.g., when experimenting with new features
or bug fixing on separate branches) or unnecessary (e.g.,
intermittent breakages due to flaky tests). Identifying these
kinds of breakages can be subjective and challenging [13,
24], which is out of the scope of this study. Besides, we clone
the GIT repository of each project to compute additional
project-level and build-level metrics (e.g., build configu-
ration and developer experience). We also analyze build
configuration files (i.e., .travis.yml) to compute metrics about
build configurations, such as adopted CI features. Moreover,
we collect CI metrics about builds (e.g., build integration
environments) from TRAVIS CI.

4. https://blog.travis-ci.com/2013-11-27-fast-finishing-builds
5. https://docs.travis-ci.com/api
6. https://ghtorrent.org

https://travis-ci.org
https://circleci.com
https://blog.travis-ci.com/2013-11-27-fast-finishing-builds
https://docs.travis-ci.com/api
https://ghtorrent.org
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Figure 1: Overview of our study

3.2 Data Processing
This section describes how we process our collected data.

3.2.1 Grouping the studied projects into quadrants
Each build in our dataset has two performance measures
representing (i) build duration (continuous values) and (ii)
build status (categorical: broken or passed). To group the
studied projects, we compute the dominant performance of
each project as follows.

• We summarize the build durations of each project in
our dataset by taking the median build duration.

• We summarize build breakages by computing the build
breakage ratio as a proportion of broken builds of a
project over the total number of builds of that project.

To visualize the studied projects, we plot the build break-
age ratio of each project against the median build duration
of that project. Then, we split the plot into four quadrants
using the overall median value of build breakage ratios and
median build durations of all projects as thresholds. The
median measure is robust as it is not heavily influenced by
outliers [25]. Figure 2 shows the distribution of the studied
projects across the four quadrants. The x-axis represents the
median build durations of the studied projects. The y-axis
represents the build breakage ratios of the studied projects.
Each point on the plot represents a project in our dataset.
The position of each point (i.e., project) is based on the build
breakage ratio and the median build duration of the project.
The size of a point represents the number of builds of the
projects. We use the median breakage ratio (i.e., 20%) and
median build duration (i.e., 6 minutes) across all projects to
group projects into the quadrants. A project may belong to
one of the following quadrants:

• The lower-left quadrant (dominantly timely/passing
‘T/P’): comprises 176 projects in which the majority of
the builds finish timely and pass.

• The lower-right quadrant (dominantly long/passing
‘L/P’): comprises 118 projects in which the majority of
the builds pass but take longer to finish.

• The upper-left quadrant (dominantly timely/broken ‘T/B’):
comprises 118 projects in which the majority of the
builds finish timely but break.

• The upper-right quadrant (dominantly long/broken ‘L/B’):
comprises 176 projects in which the majority of the
builds break and take longer to finish.

Dominantly Timely/Passing (T/P)

Dominantly Timely/Broken (T/B) Dominantly Long/Broken (L/B)

Dominantly Long/Passing (L/P)

Median Build Duration (in minutes)
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Figure 2: Quadrants of the studied projects using the median
build duration (x-axis) and the breakage ratio (y-axis)

Sensitivity analysis. Categorizing projects into quadrants
using the entire build history might not be realistic. There-
fore, in addition to using the entire build history of projects,
we also produce quadrants for each quarter of the project
lifetimes. As a result, a project can belong to four different
quadrants across its lifetime. For example, a project with
a four-year lifetime can belong to a different quadrant
every year. We analyze whether projects undergo changes
between quadrants during their lifetime.

3.2.2 Computing project-level metrics
Build performance can be affected by the characteristics of
software projects [18]. Therefore, it is important for develop-
ers to understand whether certain characteristics are associ-
ated with the build durations and breakages of a project. We
collect project-level information about the studied projects.
We study the importance of project characteristics in mod-
eling the build performance by considering five facets or
project-level metrics, as follows.

• Programming Language: Projects from different lan-
guages may experience different CI build performance.
We study whether the performance of Ruby builds
differs from that of Java builds.

• Project Maturity: Mature projects can have a different
CI experience from those projects that are still in their
early stages of development. We study whether project
maturity (e.g., project age and test density) relates to
the build performance.
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• Development Activity: Projects have different levels of
activities (e.g., committing more frequently). We study
whether more active projects generate more successful
builds than projects with fewer activities.

• CI Activity: Developers may need to maintain builds
very often to cope with code changes. We study
whether CI activities (e.g., frequent build configura-
tions) are associated with build performance.

• Project Reputation: Projects desire to generate acceptable
CI builds as much as maintain a better reputation. We
study whether the reputation of projects (e.g., project
stars) is associated with the build performance.

For each facet, we compute a set of project-level metrics
(i.e., a single metric value for each project). In total, we com-
pute 18 project-level metrics. Table 1 gives details about the
project-level metrics and how they are computed. We use
the project-level metrics to model the differences between
projects across the four quadrants (RQ1).

3.2.3 Computing build-level metrics
Despite the importance of project-level metrics, developers
may be less capable to control certain project characteristics
(e.g., the programming language). Therefore, in our work,
we study the association of a set of lower-level metrics
(i.e., at the build level) with the perceived build durations
and breakages. Differently from project-level metrics, each
build of the studied projects has a single value for each of
the build-level metrics. In total, we compute 40 exploratory
metrics about the builds in our dataset across three facets:
code, CI, and developer metrics. Table 2 presents a detailed
description of the build-level metrics, their data types, and
how they are computed. We use the build-level metrics
to model build states (RQ2) and how to switch projects
to other states (RQ3). In particular, we aim to understand
which build-level metrics are associated with build states
and what actions developers can take to switch a project
to a better build state. We also use build-level metrics
to perform within-project analysis to explore significantly
changed metrics across the lifetime of the project (RQ4).

3.2.4 Performing correlation and redundancy analyses
We use the computed project-level and build-level metrics
as independent variables to fit our logistic regression models
(See Section 4: RQ1, RQ2, and RQ3). We first exclude the
highly correlated independent variables, since they can ad-
versely affect regression models [26]. We follow the guide-
lines provided by Harrell [27] on regression modeling. In
particular, we use the Spearman rank ρ clustering anal-
ysis [28] (using the varclus function from the rms7 R
package) to identify highly correlated variables. For each
pair of correlated variables of |ρ| > 0.7, we prefer the simple
and more informative metric over the complex metric [29].

For project-level metrics, we exclude ‘# of builds’, since
it is highly correlated with ‘# of commits per lifetime’. We
also exclude ‘# of build jobs’, since it is highly correlated
with ‘# unique build environments’. Moreover, we exclude
‘# of forks’, since it is highly correlated with ‘# of stars’.
For build-level metrics, we exclude (a) ‘Configuration lines
added’ and ‘Configuration lines deleted’, since they are highly
correlated with ‘Configuration files changed’, (b) ‘Source files

7. https://cran.r-project.org/web/packages/rms/rms.pdf

changed’, since it is highly correlated with ‘Source churn’, (c)
‘Jobs removed’, since it is highly correlated with ‘Jobs added’,
(d) and finally ‘Author experience: # of commits’, since it is
highly correlated with ‘Author experience: # of days’.

Finally, we perform a redundancy analysis on the re-
maining variables, since redundant variables can distort
regression models [27]. We use the redun function from the
rms R package to identify variables that can be estimated
by other variables with R2 ≥ 0.9. We observe that none of
the project-level or build-level metrics are redundant.

3.3 Conducting a developer survey
Alongside our experimental observations, we further seek
feedback and insights from software developers with CI
experience on the possible interplay between build dura-
tions and build breakages. In particular, we conduct a user
study with sample developers who have contributed to the
projects in our study to confirm/validate our experimental
observations. To do this, we use the GITHUB API8 to re-
trieve the names and email addresses of developers having
commits in the studied projects. Then, we sort developers
based on their latest activity on GitHub and send survey
invitations to the most recently active developers (a total of
4, 366 developers) who have public Email addresses (the in-
vitation letter can be found in our replication package [19]).
These developers contributed to the vast majority (94%)
of the studied projects, taking into consideration that one
developer can have contributions across multiple projects.
Our questionnaire survey consists of a combination of Likert
scale and open-ended questions, presented in Table 3. The
survey is delivered online through Qualtrics and has two
groups of questions: (1) questions to gain insights about
the demographics of survey respondents; and (2) questions
to verify the experimental observations of our study. To
compensate developers for their time, we offer 10$ Amazon
gift cards to 30% randomly drawn survey respondents who
complete the questionnaire and share their contact informa-
tion to receive the prize. Our invitation Email did not reach
366 (8.4%) developers due to having obsolete Emails. In
total, we receive 224 anonymous responses to our survey
(i.e., 5.6% response rate after excluding the unreachable
Emails). However, we found that 84 respondents provided
partial responses in which not all the survey questions
are answered, leaving us with 139 complete submitted
responses (i.e., 3.5% response rate).

Figure 3 shows a summary of the demographics of
our survey respondents. The majority of the respondents
are males (96%), between 25 and 45-years-old (80%), from
Europe and North America (87%), are maintainers or ac-
tive contributors of software projects (64%), have over ten
years of software development experience (81%), have over
five years of TRAVIS CI experience (54%), and use other
CI services, such as CIRCLECI and JENKINS (42%). We
exclude two survey respondents who have no experience
with TRAVIS CI or other CI services. Compared to the State
of the Octoverse report (2022) as a baseline,9 which reports
the demographics of GitHub users, we find that the top
country of our survey respondents is the United States,

8. https://docs.github.com/en/rest/commits/commits
9. https://octoverse.github.com/2022/global-tech-talent

https://cran.r-project.org/web/packages/rms/rms.pdf
https://docs.github.com/en/rest/commits/commits
https://octoverse.github.com/2022/global-tech-talent
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Table 1: Description of the project-level metrics used in our logistic regression models

Project characteristic Project-level metric Description

Programming Language Language The GITHUB dominant programming language of a project

Code Maturity Project age Time difference (in terms of days) between the last build and project creation date
Size (SLOC) Number of source lines of code of a project
Test density Median number of test cases per 1, 000 SLOC of a project

Development Activity # of commits per lifetime Ratio of commits per a project lifetime
Growth rate Ratio of the relative increase/decrease (i.e., delta) in the lines of code
# of branches Number of branches of a project
Unique developers Number of unique developers contributed to a project
Team size Median team size at each build of a project lifetime

CI Activity CI lifespan Time difference (in terms of days) between the last and first builds of a project
# of builds Number of builds triggered by a project
Building frequency Frequency (in terms of days) of triggering builds by a project
Configuration ratio Ratio of commits that change build configurations per a project lifetime
Configuration frequency Frequency (in terms of days) of changing build configurations of a project
Build environments Number of unique integration environments have been used as build jobs in a project
# of build jobs Median number of jobs per build of a project

Reputation # of stars Number of GITHUB stars of a project (i.e., being a favorite project)
# of forks Number of GITHUB repository forks of a project

Table 2: Description of the build-level metrics used in our logistic regression models

Build-level metric DT* Description

C
od

e
m

et
ri

cs

Is pull request (PR) C Whether the build was triggered by a commit of a pull request
All built commits N Number of commits integrated by the build (committed after the last build)
Commits on touched files N Number of commits on the files changed by the commits in the build
Source churn N Lines of source code changed by the commits in the build
Test churn N Lines of test code changed by the build commits
Files changed N Number of files changed by the commits in the build
Source files changed N Number of source files changed by the commits in the build
Documentation files changed N Number of documentation files changed by the commits in the build
Configuration files changed N Number of configuration (e.g., .xml and .yml) files modified by the commits in the build
Configuration lines added N Number of added lines to configuration files
Configuration lines deleted N Number of deleted lines from configuration files
Other files changed N Number of other files changed by the commits in the build

C
I

m
et

ri
cs

Build day/night C Whether the build is triggered during work hours or at night (CI server time-zone)
Commit day/night C Whether code changes are committed during the working hours or at night (adjusted to time zone)
Weekday/weekend C Whether the build is triggered during the week working days or on the weekend
Is cache enabled C Whether caching is enabled or used in the build
Is fast_finish enabled C Whether fast_finish is enabled in the build
Is docker used C Whether a docker container is used to run build jobs on
Is sudo enabled C Whether sudo is enabled in the build
Operating system (OS) C The operating system(s) used to run the build jobs on
OS distribution C The distribution of the operating systems used to run the build jobs on
Jobs added N Number of jobs added to the build
Jobs removed N Number of jobs removed from the build
Jobs changed N Number of job changes (adding and removing) in the build
Retry times N Number of times to rerun failed commands in the build
Travis wait N Time (in seconds) of the travis_wait build configuration to wait for long-running commands
Install instructions N Number of installation instructions in .travis.yml
Script instructions N Number of script instructions in .travis.yml
After script instructions N Number of instructions in .travis.yml to run after the script is run
Deployment instructions N Number of deployment instructions in .travis.yml

D
ev

el
op

er
m

et
ri

cs

Is core developer C (intra-project) Whether the developer who triggered the build is a core member of the project to
which the build belongs

Developer experience: # of days N (intra-project) Number of days the developer who authored the build has been contributing to the
project to which the build belongs

Developer experience: # of commits N (intra-project) Number of commits the developer who authored the build has in the project to
which the build belongs

Developer total activities N (inter-project) Number of developer activities (commits, issues, pull requests, and reviews) across
GitHub projects in the past three months

Developer % of commits N (inter-project) Ratio of the commits of the developer to the total activities
Developer % of issues N (inter-project) Ratio of the issues raised by the developer to the total activities
Developer % of open pull requests N (inter-project) Ratio of open pull requests of the developer to the total activities
Developer % of merged pull requests N (inter-project) Ratio of merged pull requests of the developer to the total activities
Developer % of unmerged pull requests N (inter-project) Ratio of unmerged pull requests of the developer to the total activities
Developer % of reviews N (inter-project) Ratio of reviews performed by the developer to the total activities

* Data Type (DT): (C) Categorical – (N) Numeric
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thus matching what is reported in the report. Therefore, all
conclusions of this study are only representative of the study
population.

We integrate the results of our developer survey with the
experimental observations of the studied RQs. For each ob-
servation, we ask participants two questions: a Likert-scale
question and an open-ended question. Likert scale questions
ask about the extent to which developers agree or disagree
with an observation from score 1 (strongly disagree) to score
5 (strongly agree). Open-ended questions ask developers
about any justification of the experimental observations. To
analyze the level of agreement of developers with each ob-
servation, we calculate the percentage of each score for each
question. To understand the rationale behind the scores, we
manually analyze the responses to open-ended questions
related to each score and report the common justifications
and provide quotations of representative responses. For
open-ended questions that require categorization of the
responses (e.g., Section 2), card sorting sessions [30] are
used to perform an open coding of the responses to extract
common themes and statements. Card sorting is performed
by the first and second co-authors, where they collabora-
tively perform manual labeling of responses, discuss any
uncertainty in the responses, and merge similar labels into
common groups.

4 EXPERIMENTAL RESULTS

In this section, we discuss the motivation, approaches, and
findings of our research questions. In addition to reporting
our findings, we discuss the side effects of the metrics
reported by prior studies.

4.1 RQ1: What project characteristics are associated
with build performance?
Motivation. Ståhl and Bosch [18] suggested that the varia-
tions in the observations reported by prior studies on build
durations and breakages could be due to contextual differ-
ences in the studied projects. However, the role of context
in the overall build performance remains unexplored. In
particular, it is unclear which project characteristics may
have associations with build durations and breakages. It is
important for developers to understand the characteristics
of their projects to identify the best practices that suit their
needs. In this RQ, we uncover the association of project
characteristics with build durations and breakages.

Approach. We use logistic regression to model the differ-
ences in build durations and breakages between the four
quadrants (shown in Figure 2). In particular, we fit a multi-
nomial logistic regression model [31] using the multinom
function provided by the nnet10 R package. Our model
maintains a categorical dependent variable representing the
quadrants as four levels. We use the dominantly timely/passed
quadrant as a reference level for modeling and comparing
the other three quadrants. We use 14 project-level metrics
as independent variables in our model. We use a stepwise
algorithm that performs both forward and backward elimi-
nation of independent variables that have less contribution
in modeling the difference between quadrants. This helps

10. https://cran.r-project.org/web/packages/nnet/nnet.pdf

us highlight the most significant project characteristics as-
sociated with build performance. Then, we use the ANOVA
test [32] to compute the significance (in terms of χ2) of each
independent variable in the model. χ2 tests if our model is
statistically different from the same model in the absence of
a given variable—according to the degrees of freedom in our
model. We compute the percentage of χ2 of each variable to
the total χ2 values of all the variables. We compute the odds
ratios [33] (by exponentiating the estimated coefficients ob-
tained from our model) to measure how a unit increases in
an independent variable is associated with the dependent
variable. We use upward and downward arrows to indicate
direct and inverse relationships, respectively.

Findings. Figure 4 shows the results of grouping projects
into quadrants for each quarter of their development life-
time. Table 4 shows the results of the multinomial regression
model we fit on the four quadrants of projects depicted in
Figure 2, taking into consideration that the Timely/Passed
quadrant is the reference for comparing other quadrants.

Observation 1.1. The majority (80%) of projects retain their
build performance for over three quarters of their lifetime.
Looking at Figure 4, we find that the overall median build
duration has steadily increased over time from 3.4 minutes
(1st quarter) to 5.8 minutes (4th quarter), with an average
difference of +0.8 minutes per quarter. The increase in
build durations is expected as software projects become
more complex as they evolve. However, we find that the
build breakage ratio has decreased over time from 20% (1st

quarter) to 17% (4th quarter), with an average difference of
minus 1% per quarter. In addition, we observe that 28% of
projects retain the same quadrant for all lifetime quarters
and 53% of projects alternate between only two quadrants
(i.e., retaining their build performance for 75% of their life-
time). Only a very few projects (1%) alternate between the
four quadrants during their lifetime quarters. Hence, in our
subsequent analyses, we use the categorization of projects
into quadrants resulting from their entire lifetime (as shown
in Figure 2), particularly the results of the multinomial
regression model in Table 4.

Observation 1.2. Overall, about half of survey respondents
acknowledge the association of project characteristics with
build performance. As Figure 5 depicts, 19% and 29% of
survey respondents strongly agree and agree, respectively,
that there is a potential association of the characteristics of
a project with the build durations and breakages of that
project. Looking at Figure 6, we observe that the common
project characteristics associated with build performance
indicated by respondents include tests, size, configuration,
dependencies, age, and team. These characteristics mainly
relate to project maturity, which are already accounted for
in our model. Most importantly, survey respondents raised
many testing-related characteristics that can have a direct
association with build performance, including the architec-
ture, complexity, size, level (e.g., unit or integration), and
execution frequency of software tests. However, we observe
no responses referring to CI activity (e.g., frequency of CI
building or configurations) and only a few (five) responses
related to programming languages. This suggests that de-
velopers might be less aware of CI-specific optimization
opportunities for their builds.

https://cran.r-project.org/web/packages/nnet/nnet.pdf
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Table 3: Survey instrument (questionnaire)

 #  Question  Answer 

 Section 1: Demographics 
 Q  1.1  What is your gender?  [Female, Male, Other, Prefer not to answer] 
 Q  1.2  Which country do you work from?  open-ended response 
 Q  1.3  What is your age range?  [Under 25, 25-35, 36-45, 46-55, Over 55] 
 Q  1.4  What are your overall years of experience with software development?  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10+] years 
 Q  1.5  What are your overall years of experience with T  RAVIS  CI?  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10+] years 
 Q  1.6  What is your role(s) in the repository or the technology associated with T  RAVIS  CI?  [User, Maintainer, Active contributor, Occasional 

 contributor, Other] 
 Q  1.7  What other CI services have you used in addition to T  RAVIS  CI? (Select all that apply)  [CircleCI, Appveyor, TeamCity, Other] 

 Section 2: Opinion about our experimental observations 
 In this section, we wish to get your generous feedback on the observations that we obtain from conducting statistical analyses using an empirical experiment 
 on 500+ GitHub projects that are linked with T  RAVIS  CI. 

 Below, you will find observations from our experimental analysis. Please let us know the extent to which you  Agree  or  Disagree  with each finding and how 
 you would justify your answer or explain the possible reasons for each observation, based on your experience. 

 #  Observation 

 Likert Scale 
 [1  :  strongly disagree, 
 2  :  disagree, 
 3  :  neutral, 
 4  :  agree, 
 5  :  strongly agree] 

 Justification/Explanation 
 open-ended response 

 Q  2.1  Project characteristics (e.g., project size, build complexity, activity, etc.) are associated with build 
 performance. If you agree, explain what project characteristics are associated the most. 

 Q  2.2  Modifying the build configuration more frequently can be associated with build durations and 
 breakages. 

 Q  2.3  Younger projects (i.e., those that are at their early development stages) are likely to have more build 
 breakages but faster builds. 

 Q  2.4  Commits submitted by occasional and less experienced developers are associated with making builds 
 faster and passing. 

 Q  2.5  Allowing builds to wait for long-running tests or to retry failing commands multiple times is unlikely 
 to help generate passed builds. 

 Q  2.6  Using non-default operating systems or Linux distributions is associated with long and frequently 
 broken builds. 

 Q  2.7  Actions to optimize builds are restricted by the current build durations and breakages of a project. 

 Q  2.8  The  fast_finish  configuration speeds up feedback of  broken builds, but not passing builds. 

 Q  2.9  Besides making builds faster, CI caching can also be associated with a reduced number of build 
 breakages. 

 Q  2.10  CI builds triggered on weekends are more likely to be faster and passed. 

 Q  2.11  Build durations and build breakages tend to follow a similar pattern from one build to another (i.e., 
 if a previous build is long or broken, the following build will most likely be long or broken). 

 Q  2.12  Build performance (durations and breakages) change over time throughout the project lifetime. 

Table 4: Project-level stepwise multinomial model results — detailed results can be found in our replication package [19]

Project-level metrics Overall Timely/Broken Long/Passed Long/Broken
Signf.+ χ2% Signf. Rel. Signf. Rel. Signf. Rel.

Build environments *** 26.1 *** ↗ *** ↗
Building frequency *** 12.6 *** ↗ *** ↘ *** ↘
Configuration frequency *** 11.9 *** ↗ *** ↗
Language (Ruby) *** 10.2 *** ↗ *** ↘ *** ↘
Size (SLOC) *** 10.1 ** ↗ * ↗
Configuration ratio ** 9.8 *** ↗ *** ↗ *** ↗
# of commits per lifetime ** 8.6 *** ↗ ** ↗
Branch count * 5.9 ** ↘
Team size . 4.8 *** ↘ *** ↘ *** ↘
+Significance codes (p-value): 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Figure 3: Demographics of survey respondents

Project characteristics have association with the build performance
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Figure 5: Developers’ feedback about the association of
project characteristics with build performance (Q2.1)
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Figure 6: Common project characteristics associated with
build performance based on survey respondents (Q2.1)

Observation 1.3. Overly configuring CI builds is highly
associated with longer build durations and frequent build
breakages. Our model results show that the build configu-
ration frequency has a significant association with long and
frequently broken builds. Analyzing build configuration
frequencies of the projects in our dataset reveals that projects
in which builds pass timely tend to be configured 36%
less frequently than other projects. As per Figure 7, 47%
of survey respondents agree with our observation, but there
are two points of view regarding such an association. On
the one hand, 26% of responses indicate that changing the
build configuration is likely the cause of long or broken
builds; “Any time configuration for a build system is changed it’s
likely going to cause some issues”; “If you’re frequently modifying
the build configuration then the likelihood of an error causing
a build failure definitely goes up”. On the other hand, 36%
of responses indicate that changing the build configuration
occurs as a reaction to optimize the build duration or fix
build breakages; “This is backwards. Builds don’t fail because of
modifying the build config, rather projects modify the build config
because of failures”; “yes, this is often also our way to try to fix
oddity”. Other responses (15%) indicate that the association
can be in both directions depending on the type of change to
build configuration; “it can be associated with faster build when
you optimize, but it can lead to some failures”. Overall, survey
respondents recommend changing the build configuration
only on demand (i.e., when CI problems are encountered
because of the build configuration itself); “Never change a
winning horse. But if there are issues it makes sense to fix them”;
“If it ain’t broke, don’t fix it”.
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Figure 4: Grouping projects into quadrants over the development lifetimes (quarter-wise)
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Frequent build configurations have an association with a lower build performance (long durations and breakages)

Percentage
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9% 15% 30% 27% 19%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 7: Developers’ feedback about the association of
frequent build configurations with build performance (Q2.2)

Observation 1.4. The more build environments a project has,
the more likely for the project to suffer from long and broken
builds. We observe that projects with long and broken
builds have significantly more (a median of 1.7x) integration
environments than timely and passed builds. Multiple CI
environments can complicate build maintenance and make
builds more prone to long durations and intermittent break-
ages [9, 13]. Previous research reported that most of the
changes to the CI build configuration are related to build
environments [3, 34]; “Having a large build matrix (e.g., trying
to support multiple combinations of Ruby versions and Rails
versions)..., or having lots of active development going on in
parallel (e.g., having a hackfest with dozens of CI jobs running
at once and getting queued because of limited CI capacity)”. Our
results indicate that even if a project maintains single-job
builds at a time, frequently changing the build environment
for that job can negatively affect the build performance.
Survey respondents indicate that the main issue regarding
the declined build performance of multi-job builds is mainly
due to bad parallelization practices employed by develop-
ers; e.g., “Poor build parallelization, both in the separation of
build jobs and in-job parallelization.”. Therefore, developers
should be more careful when setting up build environments;
e.g., “Split longer jobs into smaller tasks which can run in
parallel. Sometimes change certain time-consuming CI jobs to
avoid running on master when they have just run on a feature
branch (which was merged in fast-forward-mode)”.

Observation 1.5. Large and active projects are likely
to have longer and more frequent build breakages.
Vasilescu et al. [35] reported that, in older projects, pushed
commits lead to more build breakages than pull requests.
However, our model reveals no association of build perfor-
mance with the project’s chronological age (i.e., in terms of
time). We observe that, regardless of the chronological age
of projects, having 100 more commits per year (i.e., more
active) increases the odds of having long and broken builds
by 34%. This result is confirmed by survey respondents who
indicate that “The age of the project has no bearing on this
whatsoever.”; “I’m not sure if I’ve seen a correlation here”. Still,
we observe from Figure 8 that half of the respondents agree
that younger projects can have better build performance.
However, our analysis of the justifications shows that re-
spondents tend to rather refer to the size of projects when
referring to age “Younger projects are usually smaller. A young
project is more likely to have a less mature development process”
or team experience “Probably correlated with experience of
the developers with, in general, less experienced developers on
younger projects.”. Therefore, given that frequent commit-
ting is recommended in CI, developers should do so very
carefully. For example, committing changes without taking
into account the side effects of such changes on existing
tests or configurations may introduce unnecessary overhead

that would not occur if changes were committed with more
care. Therefore, developers are encouraged to keep in mind
any potentially accumulated increase in build durations or
breakages when making changes to the code base.

 Younger projects have better build performance

Percentage
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9% 16% 25% 33% 17%
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Figure 8: Developers’ feedback about the association of
project age with build performance (Q2.3)

RQ1 summary. As confirmed by survey respondents, the
context of a project (e.g., being a large and active project
with extensive tests and configuration) has a strong as-
sociation with frequently long and broken builds. Devel-
opers are encouraged to change build configuration only
when needed (e.g., to optimize or fix problems related to
build performance).

4.2 RQ2: What build-level metrics are significantly as-
sociated with build durations and/or breakages?
Motivation. Findings of RQ1 suggest that project charac-
teristics are strongly associated with build performance.
However, builds within the same project may have different
characteristics. In this RQ, we perform an intra-project anal-
ysis aiming to understand which build-level metrics have a
strong association with build durations and breakages.
Approach. Similar to RQ1, we fit a multinomial logistic
regression model using quadrants as a categorical depen-
dent variable, with the dominantly timely/passed quadrant as
a reference level. We use the 35 build-level metrics that
remained after performing correlation and redundancy as
independent variables in our model. We also use the step-
wise algorithm to identify significant independent variables,
measure the χ2 using the ANOVA test and compute the
odds ratios of each variable. We mark direct and inverse re-
lationships using upward and downward arrows, respectively.
Findings. Table 5 presents the results obtained from the
models of each of the four quadrants.
Observation 2.1. The experience and role of developers
have significant associations with build performance. A
prior study [10] reported that less experienced developers
are likely to produce fewer build breakages. The results
of our model also show that code changes submitted by
more experienced developers increase the odds of having
long builds in addition to build breakages. In particu-
lar, we observe that dominantly long/broken projects have
significantly more experienced developers (a median 2.5
years) than dominantly timely/passed projects (a median 2
years). However, looking at Figure 9, we find that 77%
of the survey respondents agree that it is the contrary;
“the opposite is true, novice contributors would make the build
failing and that is a main motivation for having tests, ci, etc.”
Still, respondents believe that less experienced developers
usually have timely and passed builds when submitting
simple or less impactful changes (e.g., documentation) or
do not participate in software testing; “maybe they only
commit simple changes that are fundamentally less likely to cause
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Table 5: Results of the build-level stepwise multinomial model — results of all variables are in our replication package [19]

Build-level metrics Overall Timely/Broken Long/Passed Long/Broken
Signf.+ χ2% Signf. Rel. Signf. Rel. Signf. Rel.

Developer experience: # of days *** 29.7 *** ↗ *** ↗
Test churn *** 14.3 *** ↗ *** ↗ *** ↗
Installation *** 14.0 *** ↗ *** ↗ *** ↗
Script instructions *** 8.8 *** ↗ *** ↗ *** ↗
Retry times *** 8.2 *** ↗ *** ↗ *** ↗
Is travis_wait used *** 4.5 *** ↘ ** ↘ *** ↗
Is sudo used *** 3.8 *** ↘ *** ↗ *** ↗
Files changed *** 3.5 *** ↗ *** ↘ *** ↘
OS: OSX *** 2.2 *** ↘ *** ↘ *** ↘
OS: Linux + OSX *** 2.2 *** ↗ *** ↗ *** ↗
OS: Linux + Windows *** 2.2 *** ↗ *** ↘ *** ↘
OS: Linux + OSX + Windows *** 2.2 *** ↗ *** ↘ *** ↘
After script instructions *** 1.9 *** ↗ *** ↗
Developer total activities *** 1.1 *** ↘ *** ↘ *** ↘
Configuration files changed *** 1.0 *** ↗ *** ↗
Is fast_finish enabled *** 0.3 *** ↗ *** ↗ *** ↗
Developer % of open pull requests *** 0.2 *** ↗ *** ↘ *** ↘
+Significance codes (p-value): 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

action at a distance”. Other respondents indicate that “project
maintainers don’t care about their failing builds, but the new
contributor does” and “experienced developers are less likely to
run the tests they’ve added/changed locally first, so probably
more likely to cause failures on CI”. Moreover, we observe
that developers with more activities (e.g., commits, pull
requests, and reviews) have a strong association with timely
and passed builds. This result suggests that, regardless of
development lifespan, more active developers tend to be
more careful with CI builds; “I generally expect frequent core
contributors to be the most effective at fixing these kinds of issues”.

Occasional and less experienced developers have association with timely and passed builds

Percentage

80 70 60 50 40 30 20 10 0 10 20

48% 30% 20% 2%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 9: Developers’ feedback about the association of the
experience of developers with build performance (Q2.4)

Observation 2.2. Waiting for long-running tests and retry-
ing failed commands multiple times is strongly associ-
ated with long and broken builds. Prefixing build com-
mands with travis_wait or travis_retry (or built-
in --retry arguments) is recommended to bypass un-
expected build breakages due to timeouts.11,12 However,
such configurations are likely to delay builds [9]. Besides
delaying builds, we observe that command retrials do not
guarantee passing builds. Our results show that retrying
and waiting for commands or tests are associated with
both long and broken builds. To investigate the reasons, we
analyze all builds in our dataset that use the travis_wait
configuration. We observe that 90% of the builds do not
specify the time to wait for long-running commands (i.e.,
wait for 20 minutes by default). However, analyzing a
sample of the logs of the builds that use travis_wait
shows that breakages occur after waiting for commands
by a median of ten minutes. In addition, we observe that

11. https://docs.travis-ci.com/user/common-build-problems/
#build-times-out-because-no-output-was-received

12. https://docs.travis-ci.com/user/common-build-problems/
#timeouts-installing-dependencies

builds may be configured to wait for 120 minutes but even-
tually break without waiting that long. After investigating
reported issues to TRAVIS CI,13 we find that commands may
create child processes that are not tracked by travis_wait,
thus making the build timeout when the main process
becomes silent for ten minutes.

Almost half of survey respondents agree that waiting for
or retrying commands is not always helpful in fixing build
breakages (Figure 10) and should rather be a last resort; For
example, some respondents indicate that “automatic retries
are a band-aid on a serious wound. If your tests aren’t reliable,
fix your tests”; “Long tests or flaky builds should be fixed instead
of retried”. Besides, command retrial “is a strategy to address
something that’s unreliable, so it makes sense that it would often
not be successful”. Nevertheless, other respondents recom-
mend using such configurations only when build failures
are due to external factors; “the 3rd party API happened
to suck and be unreliable, so retrying the submission to that
API was a necessary evil”. Our analysis of the arguments of
respondents who disagree with our observation shows that
they confirm that developers should be more careful when
using automatic retrials of failing commands. For example,
“If you’re retrying and it doesn’t fix the build, you should fix
your retry logic or stop retrying”; “Well I think retrying does
help but it’s a bad idea for the future”. Hence, developers are
encouraged to avoid generalizing such workarounds for all
commands, and should rather consider providing real fixes
to failing commands.

Waiting for long−running tests or retrying failing commands multiple times does not guarantee passing builds

Percentage
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Figure 10: Developers’ feedback about the association of
retrials and waiting for commands/tests with build perfor-
mance (Q2.5)

Observation 2.3. Using multiple or non-default build ar-
chitectures (i.e., operating system) has a negative associa-

13. https://github.com/travis-ci/travis-ci/issues/8526

https://docs.travis-ci.com/user/common-build-problems/#build-times-out-because-no-output-was-received
https://docs.travis-ci.com/user/common-build-problems/#build-times-out-because-no-output-was-received
https://docs.travis-ci.com/user/common-build-problems/#timeouts-installing-dependencies
https://docs.travis-ci.com/user/common-build-problems/#timeouts-installing-dependencies
https://github.com/travis-ci/travis-ci/issues/8526
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tion with build performance. Developers change the build
architecture very often [34]. However, failure to choose a
proper architecture may impact the overall CI building
experience [36]. We observe that running builds on mul-
tiple operating systems or changing the default operating
system (i.e., Linux) has a strong association with long
and frequently broken builds. In particular, we observe
that projects that use OSX (alone or with other operating
systems) have significantly longer and more frequent build
breakages than other projects. We investigate the reasons
behind such a negative behavior of OSX. We find that the
documentation14 of TRAVIS CI indicates that running builds
on newer versions of OSX is likely to cause unexpected build
breakages. In addition, we observe that 95% of the builds
that use OSX also use Linux and/or Windows. Yet, coupling
OSX with other operating systems may introduce conflict in
some build commands (e.g., file permission commands).

Nearly a third of respondents agree with our observation
(Figure 11). Yet, 47% of respondents have a disagreement
with this association. While our analysis of the responses
shows that respondents do not find this association to be
obvious, we observe that they had no prior experience using
multiple architectures in their CI builds. Still, based on
the analyzed responses, some operating systems are more
likely to break or delay builds; “I would expect older and less-
popular OSes to have more failures and be slower, because they
might indicate a very big matrix (e.g., supporting many OSes)
or because there are more dependency failures as an OS drops
out of support”. We also find that respondents provide clear
reasons why operating systems other than Linux can make
builds take longer “Windows has proven to be a lot more difficult
to reduce build times...I believe there are less macOS builders
available due to the lack of containers which can result in builds
taking longer to start” or break unexpectedly “I would say that
having reproducible builds for OSX and iOS is not always as easy,
since it requires a level of automation”. Therefore, we suggest
that developers should select build architectures carefully to
avoid unexpected build performance.

Using non−default operating systems or Linux distributions is associated with long and frequently broken builds

Percentage

50 40 30 20 10 0 10 20 30 40 50

24% 23% 21% 15% 17%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 11: Developers’ feedback about the association of
build architecture with build performance (Q2.6)

RQ2 summary. Both experimental and survey re-
sults suggest that workarounds (e.g., command retrials)
should be avoided and developers should rather fix
actual causes of build issues. However, there is some
level of discrepancy, especially for factors having non-
obvious associations with build performance (e.g., multi-
architecture). Moreover, inconsistent with our experi-
mental results, survey respondents do not see that less
experienced developers break fewer builds unless the
changes made are not much impactful.

14. https://docs.travis-ci.com/user/common-build-problems/
#mac-macos-sierra-1012-code-signing-errors

4.3 RQ3: What actions should developers take to opti-
mize build performance?

Motivation. RQ2 presented the most important build-level
metrics that are associated with each quadrant. Yet, it
is important for developers to understand the actions
that can help projects switch from an undesirable quad-
rant (e.g., long/broken builds) to a better quadrant (e.g.,
timely/passed). While 57% of survey respondents acknowl-
edge that build breakages can sometimes be unnecessary
(e.g., intermittent failures due to flaky tests), 88% of re-
spondents confirm that they tend to fix build breakages
regardless of the impact on build duration. Therefore, In
this RQ, we study the most important actions that can have
dual and/or side effects on the build performance.

Approach. To understand the switch between quadrants, we
use logistic regression to model the difference between each
pair of switching quadrants. Of the 12 possible quadrant
pairs, we only model six unidirectional switches between
quadrants, since modeling the opposite direction would
produce the same important metrics but with an opposite
effect. In other words, metrics that are positively associ-
ated with the switch from quadrant A to quadrant B are
negatively associated with the switch from quadrant B to
quadrant A. For each project in each quadrant, we keep
the builds in which the build status and build duration
agree with the label of the quadrant. For example, for the
bottom-left (Dominantly Timely/Passing) quadrant, we only
keep passed builds whose durations are under the overall
median build duration (i.e., five minutes).

We use mixed-effect logistic regression to model the
switches between the four quadrants shown in Figure 2. RQ1
suggests that project characteristics are strongly associated
with build performance. Hence, we use Generalized Linear
Mixed Models (GLMM) for logistic regression [37] to control
the variations between projects in our models. GLMM em-
ploys mixed (i.e., fixed and random) effects when modeling
the relationship between the dependent and independent
variables. In our models, we control the variations between
projects by using the ‘Project Identifier’ as a random effect
in our mixed-effect logistic models. This means that our
models assume a different intercept for each project [38]. We
fit six mixed-effects models to model the six unidirectional
switches between quadrants using the build-level metrics
that remained after performing correlation and redundancy
as independent variables in our models. Each model main-
tains a categorical dependent variable that represents the
labels of the two quadrants under modeling. Given that
we are interested in modeling the switch to a better quad-
rant (e.g., switching from Long/Broken to Timely/Passing), we
consider the undesirable quadrant as the reference level
of the categorical dependent variable. For example, when
we model the switch from the Long/Broken quadrant to the
Timely/Passing quadrant, we make Long/Broken as a reference
level. For the Long/Passing and Timely/Broken quadrants (in
which the switch could be considered positive in either
direction), we make Long/Passing as a reference level. Similar
to RQ1 and RQ2, we use the ANOVA and odds ratios to
analyze the relationship of the dependent variable with the
independent variables of each model.

https://docs.travis-ci.com/user/common-build-problems/#mac-macos-sierra-1012-code-signing-errors
https://docs.travis-ci.com/user/common-build-problems/#mac-macos-sierra-1012-code-signing-errors


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

Table 6: Results obtained from the six switching mixed-effects logistic models

Metric L/B 7→ T/P L/B 7→ L/P L/B 7→ T/B L/P 7→ T/P L/P 7→ T/B T/B 7→ T/P
χ2% Signf.+ Rel. χ2% Signf. Rel. χ2% Signf. Rel. χ2% Signf. Rel. χ2% Signf. Rel. χ2% Signf. Rel.

After script instructions 0.35 0.29 0.01 2.1 ** ↘ 0 1.1 ** ↘
Developer experience: # of days 0.09 0.23 0.08 0.02 0.95 3.14 *** ↘
Build day/night 0.53 1.9 * ↘ 0.02 0.13 0.14 0.1
Is CI cache enabled 37.7 *** ↗ 22.84 *** ↗ 14.84 *** ↗ 19.94 *** ↗ 8.21 *** ↗ 25.07 *** ↗
Commit day/night 0 0.52 0.42 2.51 ** ↗ 4.34 ** ↗ 0.18
Developer % of commits 1.03 * ↗ 0.56 1.83 * 3.64 *** ↗ 7.49 *** ↗ 0.92 ** ↘
Configuration files changed 0.03 2.63 ** ↘ 0.11 0.33 4.53 ** ↗ 0.24
Deployment instructions 0.88 * ↗ 0.29 1.19 . 3.77 *** ↗ 2.47 * ↗ 0.55 * ↗
OS distribution 0.77 . 0.69 4.13 *** ↗ 0.6 2.28 * ↗ 2 *** ↘
Is docker used 0.02 1.99 * ↗ 0.13 1.47 * ↘ 1.45 0.22
Is fast_finish enabled 14.98 *** ↗ 15.51 *** ↗ 22.41 *** ↗ 0.02 6.05 *** ↗ 5.53 *** ↘
Is core developer 0.96 * ↘ 1.13 . 0.03 2.65 *** ↘ 0.77 0.07
Documentation files changed 0.12 0.66 0.35 0.37 0.02 0.22
Files changed 0 0.81 0.74 0.13 0.12 0.23
Other files changed 0.08 0.14 0.22 0.19 0.07 0
Is pull request (PR) 5.1 *** ↘ 2.75 ** ↘ 0.84 0.04 24.68 *** ↗ 9.59 *** ↘
Commits in push 0.43 0.12 0.21 0.15 3.59 * ↗ 5.63 *** ↘
Commits on touched files 0.08 0.46 0.3 0.56 1.75 . 0.59 * ↘
Source churn 0.03 0.61 0.02 0.55 0.54 0.4 .
Test churn 0.11 1.39 . 1 0.37 0.24 0.11
Installation instructions 3.65 *** ↘ 0.55 1.62 * ↗ 45.5 *** ↘ 9.99 *** ↘ 1.81 *** ↘
Developer % of issues 0.74 . 0.06 0.01 0.06 0.11 0.03
Jobs changed 0.13 0.3 0.06 0.01 0.18 0
Developer % of merged pull requests 3.96 *** ↗ 1.71 * ↗ 0.21 0.02 7.73 *** ↘ 2.17 *** ↗
Jobs added 1.34 * ↘ 2.14 * ↘ 0.06 0.63 0.96 1.42 *** ↘
Developer % of open pull requests 1.13 * ↘ 1.83 * ↘ 0.22 0.74 . 0.43 0
Operating system (OS) 0.26 0.07 0.02 0.08 0.97 19.6 *** -
Retry times 10.82 *** ↗ 0 13.14 *** ↘ 0.15 2.3 * ↘ 0.55 * ↗
Developer % of reviews 0.01 0 4.75 *** ↗ 0.05 0.23 0.72 * ↘
Script instructions 1.16 * ↘ 3.31 ** ↘ 1.12 . 9.29 *** ↘ 0.74 1.66 *** ↘
Is sudo enabled 0.04 1.37 . 2.48 ** ↗ 0.16 2.51 * ↗ 3.57 *** ↗
Travis wait 0 0 0 2.02 ** ↘ 3.11 * ↘ 12.53 *** ↘
Developer % of unmerged pull requests 0 0.02 0.16 1.58 ** ↗ 0.99 0.01
Build weekday/weekend 13.44 *** ↗ 33.13 *** ↗ 27.29 *** ↗ 0.16 0.05 0.04
+Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Findings. Table 6 presents the results obtained from the
six models to switch projects to better build states. We
summarize the most important actions that are likely to
switch projects to better quadrants in Figure 12.

Observation 3.1. Actions to improve build performance are
restricted by the current build performance of a project. We
observe that actions associated with the quadrant switching
of a project may vary depending on the current quadrant of
that project (i.e., “one size does not fit all”). For example,
actions to switch dominantly long/broken projects to be

Dominantly Long/Broken (L/B)

Dominantly Long/Passing (L/P)Dominantly Timely/Passing (T/P)

Dominantly Timely/Broken (T/B)

ü Adopting CI caching
ü Adopting fast_finish
ü Using fewer-commits pushes
ü Adopting xenial Linux
ü Less travis_wait time
ü Enabling sudo
ü Non-adoption of OSX
ü Less experienced developers
ü Fewer install instructions

ü Adopting CI caching
ü Fewer script instructions
ü More deploy instructions
ü Fewer install instructions
ü Developers with more commits
ü Non-core developers

ü Adopting CI caching
ü Adopting fast_finish
ü Committing on weekends
ü Adopting trusty Linux
ü Developers with more reviews

ü Fewer command retrials
ü Fewer install instructions
ü More pull requests
ü Developers with more merged

pull requests

ü Adopting CI caching
ü More pull requests
ü Fewer install instructions
ü Developers with more commits 

and fewer merged pull requests

ü Adopting CI caching
ü Adopting fast_finish
ü Committing on weekends

Figure 12: Summary of the quadrant-switching actions

dominantly timely/passed (e.g., committing on weekends or
fewer command retrials) do not apply when the project is dom-
inantly timely/broken. Similarly, the actions for switching
a project to a dominantly timely/passed quadrant from a
dominantly timely/broken quadrant (e.g., fast_finish)
do not apply when the project is dominantly long/passing.
While 43% of survey respondents agree with this con-
clusion, as Figure 13 depicts, analyzing the responses of
respondents reveals that the restriction in actions is likely
due to the trade-off between build durations and breakages.
For example, “Slowness and unreliability compound each other:
if a build is slow, it’s hard to debug because it takes so long to
get results; if a build is unreliable, it’s hard to debug because the
change you made may not be the reason it was failing.”. There-
fore, developers are encouraged to assess the performance
of their builds during the past periods (i.e., the last k builds)
before proceeding with build performance improvement.

Actions to optimize builds are restricted by the current build performance of a project

Percentage

10 0 10 20 30 40 50 60 70 80 90

6% 7% 45% 28% 14%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 13: Developers’ feedback about the restricted actions
to improve build performance (Q2.7)

Observation 3.2. Enabling the fast_finish build con-
figuration is associated with timely builds only when
builds are dominantly broken. Prior research reported that
configuring CI builds to finish as soon as the required jobs
finish is associated with timely builds [9]. However, our
results indicate that such a configuration has lower chances
of reducing build durations when builds are dominantly
passing. The fast_finish configuration is always aligned
with the allow_failures configuration, which develop-
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ers use to allow some builds jobs to fail without breaking
the entire build. Hence, having both fast_finish and
allow_failures helps builds finish faster as there is no
need to wait for allow_failures jobs, since they do
not affect the overall build status. As Figure 14 shows,
59% of survey respondents neither agree or disagree with
our observation, while 27% of them agree with our ob-
servation. Yet, our analysis of the responses shows that
the allow_failures configuration is not recommended
as it does not allow revealing all possible build failures;
“allow failures is generally a bad idea. Tests should be fixed, or
deleted, not ignored”; “perhaps developers don’t look at the CI that
much when it usually succeeds anyway”. Therefore, developers
should have a clear rationale to either allow a build to fail
or simply exclude failing build jobs.

The fast_finish configuration speeds up feedback of broken builds, but not passing builds

Percentage

20 10 0 10 20 30 40 50 60 70

4% 11% 58% 16% 11%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 14: Developers’ feedback about the association of
fast_finish with only timely broken builds (Q2.8)

Observation 3.3. CI caching has an inverse association
with build breakages in addition to build durations. Prior
research has reported that caching less frequently changing
content is highly associated with timely builds [9]. Our
results reveal that, besides speeding up builds, the odds
of having passed builds increases by 139% when caching
is adopted. About two-thirds of the projects that adopt CI
caching cache dependencies to the CI server to allow future
builds to fetch the binaries of the dependencies from the
cache and only recently updated dependencies are installed
from their sources. Such a process can help builds avoid fail-
ures that might occur due to dependency installation [10].
We observe from Figure 15 that 40% of respondents agree
with observation; “This is true. I’ve often reduced failures by
caching more artifacts locally, rather than requiring my builds to
go out to the internet and fetch all the tools we need each time.”.
However, there is a relatively higher percentage (43%) of
disagreement. Disagreeing respondents indicate that such
an association is not obvious. Our analysis of disagreeing
responses shows arguments indicating a negative side effect
of CI caching (i.e., causing occasional build breakages);
“In my experience it is opposite. High level of caching often
can cause issues where stale data is used accidentally, causing
build failures.”. Hence, developers should better asses their
needs for caching in their builds and keep an eye on build
breakages that might be caused due to outdated or corrupt
dependencies in the cache.

 Besides speeding up builds, CI caching can also be associated with a reduced number of build breakages

Percentage

40 30 20 10 0 10 20 30 40 50 60

21% 21% 17% 24% 16%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 15: Developers’ feedback about the association of
caching with only timely broken builds (Q2.9)

Observation 3.4. The day of week has a stronger association

with long and broken builds than any other builds. Ac-
cording to prior studies, the day of week is associated with
build durations [9] but not with build breakages [10]. Our
models show that the day of week is associated with both
build durations and breakages. In particular, we observe
that committing on weekdays is 95% more likely to generate
prolonged and broken builds. Such an issue has occasion-
ally been reported to the TRAVIS CI team.15,16. We find
that the TRAVIS CI team is aware of the overhead caused
due to triggering builds during rush hours. Although 27%
of respondents agree with our observation, other 30% of
respondents have uncertain opinions. Overall, respondents
commonly agree that, on weekends, CI resources are likely
to encounter less load in comparison with working days.
Respondents also confirmed that shared CI resources are
vital in such a case; “If shared compute hardware is under
reduced load and the tests are running faster, time-dependent
(race condition) type non-deterministic test failures may also be
reduced”. Yet, this might not always be the case as other
respondents indicate that “as a paid travis subscriber, we
don’t get throttled.”. Hence, developers are recommended to
reduce the number of operations in their builds to ensure
both timeliness and passing regardless of triggering time.

Builds triggered on weekends are more likely to be faster and passed

Percentage

40 30 20 10 0 10 20 30 40 50 60

27% 16% 30% 20% 7%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 16: Developers’ feedback about the association of day
of week with build performance (Q2.10)

RQ3 summary. One size does not fit all (i.e., a CI feature
might perform inconsistently across projects). While sur-
vey respondents disagree with some experimental obser-
vations (e.g., caching rather introduces more breakages),
they confirm that there is a possible trade-off between
optimizing build durations and fixing build breakages,
thus alarming developers to be more careful when deal-
ing with different alternatives of build configurations.

4.4 RQ4: How frequently does build performance
change over time?

Motivation. Findings of RQ3 suggest that development
and build practices are associated with build performance.
However, little is known about how build durations and
breakages evolve and what makes build performance un-
dergo ups and downs. It is important to understand what
practices change when the build performance changes over
time. In this RQ, we perform an intra-project analysis to
investigate the patterns, frequency, and metrics of projects
switching between different build performance states over
time.
Approach. We analyze the evolution of the build perfor-
mance of the studied projects. For each project, we analyze
the state-switching patterns using two scenarios, as follows:

15. https://github.com/travis-ci/travis-ci/issues/2072
16. https://github.com/travis-ci/travis-ci/issues/8489

https://github.com/travis-ci/travis-ci/issues/2072
https://github.com/travis-ci/travis-ci/issues/8489
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• We identify the state switching between every pair of
subsequent builds.

• We convert the project lifetime into four quarters using
the median, 1st, and 3rd quantiles. Then, we identify
the most frequent state of each quarter as well as the
state switching between the quarters of each project.

We use the rules presented in Table 7 to summarize
project state switching as positive, negative, or strategic.
Though build breakages can sometimes be helpful to inform
developers about bugs, we consider in our analysis long
build durations and frequent build breakages as undesirable
performance states, thus switching to them is considered
negative, whereas switching from them is considered positive.
A strategic switch happens when developers decide to sacri-
fice one performance measure (e.g., timeliness) for another
(e.g., passing). If two subsequent builds or quarters have
the same states (e.g., both are positive), we combine their
states into a single state. For example, assume a project with
four quarters (S1, S2, S3, and S4). If the switch from S1

to S2 is positive and from S2 to S3 is positive, then the
switch from S1 to S3 is positive. As a result, we identify
nine evolutionary patterns (see Table 8) for projects to switch
from one state to another state or remain in the same state
throughout the development lifetime. In addition, we model
the statistical change in metrics between every two state
switches of each project using logistic regression.

Findings. Figure 17 shows (a) the ratios of build-to-build
state switches and (b) the ratios of quarter-to-quarter state
switches across the studied projects. Table 8 presents nine
patterns in which projects undergo build state-switching
over time (more details about the state-switching sub-
patterns can be found in our replication package [19]).

Observation 4.1. The majority (i.e., 79%) of builds in
our dataset follow the build state of former builds. Prior
research has reported that build breakages follow former
breakages [10, 13]. We observe that not only the breakage
but also the duration of CI builds is likely to be similar
to former builds. Nevertheless, 21% of build pairs have
different states. Prior research has reported that build break-
ages follow former breakages [10, 13]. We observe that not
only the breakage but also the duration of CI builds follow
former builds. Nevertheless, there are 21% of build pairs
that encounter different build performances. We observe
that performance state switching tends to have a similar
proportion in both directions. For example, we observe that
the proportion of builds that switch from the Timely/Passed
state to the Long/Passed state is analogous (i.e., 2.3%) in both
directions. Looking at Figure 18, survey respondents mostly
(68%) agree that builds tend to have a similar performance
to former builds, in terms of durations and breakages, since

Table 7: The rules used to tag the state switching of projects

Switch Symbol Previous quadrant Current quadrant

Positive ⊕ Any Timely/Passing

Negative ⊖ Any Long/Broken
Timely/Passing Any

Strategic ⊙ Long/Passing Timely/Broken
Timely/Broken Long/Passing

T/P L/P

L/BT/B

19.5% 43.5%

4.6% 11.2%

2.3%

1.4%

4.7%

0.7%

2.3%

1.2%
4.4%

0.7%

(a) Build to build

T/P L/P

L/BT/B

36.3% 32.2%

1.6% 2.3%

4.8%

1.8%
2.3%

0.3%

10.7%

2.0%
2.8%

0.5%

(b) Quarter to Quarter

Figure 17: Percentages of state-switching cases

Table 8: Patterns of quadrant state-switching over time

Pattern Trend Projects
# %

⊕ Steadily Positive 206 35%
⊙ Steadily Strategic 187 32%
⊕ 7→ ⊙ Degrading 111 19%
⊙ 7→ ⊕ Improving 35 06%
⊙ 7→ ⊖ Degrading 17 03%
⊖ 7→ ⊙ Improving 16 03%
⊖ Steadily Negative 9 02%
⊕ 7→ ⊖ Degrading 5 01%
⊖ 7→ ⊕ Improving 2 00%

“Not every change changes the build system”; “... unless there
are non-deterministic tests”. Therefore, it is important for
developers to understand how to revert CI builds from an
undesired build state to a better state.

Build durations and build breakages tend to follow a similar pattern from one build to another

Percentage

10 0 10 20 30 40 50 60 70 80 90

5% 6% 22% 36% 32%

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 18: Developers’ feedback about build performance
over time (Q2.11)

Observation 4.2. Developers mostly maintain both timely
and passing builds (35% of projects), but sacrifice one
performance measure in favor of the other, especially when
not possible to achieve both together (32% of projects).
Looking at Table 8, we observe that about two-thirds of
the studied projects maintain a steady build performance
throughout the development lifetime. In particular, most
(35%) of the projects maintain a positive build performance
state, whereas build states of 32% of the projects have been
steadily strategic over time (i.e., sacrificing build durations
for passing, or vice versa). Of the 187 steadily strategic
projects, 166 (89%) are steadily long/passing, whereas only
2% are steadily timely/broken, with the rest being switched
from timely/broken to long/passing (6%) or vice versa
(3%). Such results indicate that developers tend to be in
favor of passing over timeliness if both cannot be achieved
together. We find only five projects (2%) with steadily
negative build performance during their lifetime. Lastly,
we find it rare to jump from a negative to a positive
build state directly (occurred in only two projects). This
result emphasizes the importance of RQ3 findings, which
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highlight the actions that help switch projects to better
build performance states. Nevertheless, build performance
has undergone degradation and improvement in 23% and
9% of the projects, respectively. This result suggests that
build performance can easily get worse, thus posing a
challenge for developers to return it back to its normal
state. The majority (56%) of survey respondents indicate
that long and broken builds tend to improve over time (see
Figure 19). Regardless, developers are encouraged to inspect
their builds periodically, especially when taking longer or
breaking more frequently than usual, rather than relying on
other developers to do so.

To what extent do you think that the number of long and broken builds change over time

Percentage

20 10 0 10 20 30 40 50 60 70 80

2% 13% 29% 37% 19%

Very Unlikely Unlikely Unsure Likely Very Likely

Figure 19: Developers’ feedback about the likelihood of
changed build durations and breakages over time (Q2.12)

Observation 4.3. Build state-switching over time is mostly
attributed to significant changes in the experience of de-
velopers contributing to the projects. Overall, there are
264 projects (45% of all projects in our dataset) in which
build performance has been unsteady throughout the de-
velopment lifetime. We identify a total of 619 quarter-
to-quarter state switches in these projects. Our statistical
modeling of build state-switching shows that there are
significant differences between the characteristics of builds
before and after the switch (the full list of statistical test-
ing results of build state-switching can be found in our
replication package [19]). We observe that metrics related to
developer experience (both intra- and inter-project) are the
most common metrics with a significant direct association
among state switches. In addition, we observe that the most
significant metrics (e.g., the top 20 metrics) of intra-project
state switches differ from the inter-project switches reported
in RQ3. For example, 21% and 31% of the analyzed state
switches are accompanied by changes in CI fast finish and
caching configurations, respectively. Such results indicate
that developers should make use of CI practices (e.g., col-
laborating with experienced developers from other projects)
to improve the build performance in their projects.

RQ4 summary. Build performance tends to be steadily
positive or strategic. Yet, as our experimental and sur-
vey results show, projects may still encounter ups and
downs in build performance over time, but not for every
build. Nearly a third of projects sacrifice one performance
measure in favor of the other, especially when it is
not possible to achieve both together. Changes in build
performance are mainly attributed to changes in devel-
opment practices, such as involving contributions from
developers with external expertise. Therefore, developers
are encouraged to constantly explore ways to improve CI
builds that are commonly adopted by other projects.

4.5 Highlights of the study results
Our experimental and survey results show an evident in-
terplay between build durations and breakages, with dual

or inverse side effects. In particular, build performance is
contingent on the context of each project, given that project
characteristics (e.g., project maturity, development activity,
and CI configuration) are key in shaping the duration and
status of CI builds. Deciding what actions to take to reduce
the build duration or fix build breakages also depends on
where a project stands in terms of build performance. This
makes actions to have possibly inconsistent effects on build
performance across projects.

Below, we highlight the key findings in relation to the
interplay between build durations and breakages.

• Retrying failed commands can fix build breakages but,
in return, may slow down builds, and thus should be
avoided in favor of real build fixes.

• CI caching can reduce build breakages in addition to
build durations, but may cause occasional breakages if
corrupted or outdated.

• Running builds under various environments makes it
prone to long build durations and also build breakages.

• Allowing builds to fast finish infers partial build pass-
ing, thus skipping failures under some environments.

• Developers with external expertise help gain better
build performance, but may pay less attention to build
durations in favor of passing builds.

• Projects may have strategic decisions in which prefer-
ence is given to passing over timely builds or vice versa.

These findings have direct implications for developers,
researchers, and CI service providers, which are discussed
in the following section, in which we encourage researchers
and CI service providers to supply developers with more
tools and guidelines to increase their awareness of the pos-
sible interplay between CI build durations and breakages.

5 IMPLICATIONS

5.1 Implications for developers

Fixing build issues and monitoring their effectiveness
rather than ignoring them. CI builds may encounter inter-
mittent delays or breakages. In response, developers tend
to ignore the real causes and, instead, retry or wait for
failing or prolonged commands, which is also reported as a
Continuous Delivery (CD) smell [39]. However, our results
(Observation 2.2) show that such practices can result in
an interplay between build durations and breakages, since
besides increasing the build duration, builds may eventually
break after retrials or waiting. For example, developers may
fix a dependency installation issue by configuring the build
to retry installation commands multiple times, but accord-
ing to Observation 2.2, such retrials are likely to increase the
build duration with no evidence that build breakages are
resolved. Therefore, developers are encouraged to invest in
developing permanent and concrete solutions to this kind of
problems to improve the build performance, thus ensuring
that build fixes really address the outstanding build issues.

Assessing where a project stands before making any build
optimization decisions. Our results (Observation 3.1) sug-
gest that CI is not “one size, fits all”, which means that ac-
tions to improve the build performance of one project might
not necessarily apply to other projects. Project context and
where it stands in terms of build performance can limit the
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actions to reduce build durations and breakages, thus giving
less room to control interplay. Hence, developers should pay
attention to such factors when configuring their builds. For
example, when a project does not maintain experimental
build environments (i.e., build jobs), it is unlikely for that
project to benefit from the fast finish build configuration.

Reducing both build breakages and durations. Developers
rely on the documentation provided by CI service providers
when configuring builds. However, developers may be
unaware of the consequences of such configurations and
their possible interplay on the durations and breakages of
CI builds. For example, dependency caching is known to
speed up builds, but our results (Observation 3.3) show
that caching can also reduce build breakages, as it skips
dependency installation, but can cause occasional breakages
if outdated. This alarms developers to be careful when
dealing with such configurations.

Staying vigilant and up-to-date with CI practices. Build
performance can improve or decline at any point of time.
Therefore, developers should regularly keep an eye on build
durations and breakages to spot any anomalous change. In
addition, our results (Observation 4.2) show that developers
tend to sacrifice build durations for passing, or vice versa,
for about a third of the projects, thus indicating an evident
interplay. Nevertheless, recovering from such situations can
be possible if developers stay up-to-date with the common
CI configurations and recommendations used in practice.
For example, as Observation 2.3 suggests, the OS distribu-
tion can play a role in the perceived build performance.
Not specifying the OS distribution makes TRAVIS CI use the
default one, which in turn can change from time17 to time18.
Changes in default OS distributions can be accompanied by
changes in build performance, thus encouraging develop-
ers to regularly check CI updates, since such updates are
typically not communicated to developers.

5.2 Implications for researchers
Awareness of the importance of project characteristics
when reported research findings. While much research has
studied build durations and breakages, only a few studies
have considered what builds belong to which projects (e.g.,
using project-wise statistical testing [10] or mixed-effects re-
gression [9, 13]). Other studies mixed builds from different
projects together. According to our results (Observation 1.2),
project characteristics can limit the options available to de-
velopers to improve build performance, thus increasing the
chances of having interplay between build durations and
breakages. Therefore, we encourage researchers to consider
variances among projects to help developers identify the
best practices that fit their projects.

Highlighting side effects when reporting actionable find-
ings. Researchers should make clear any possible interplay,
both side effects and trade-offs, when reporting actionable
findings to developers. When a reported action is leveraged,
it is hard for developers to know whether such an action
would lead to unexpected results (e.g., Observations 2.2
and 3.3). For example, as prior research reported [9, 40],

17. https://docs.travis-ci.com/user/precise-to-trusty-migration-guide
18. https://docs.travis-ci.com/user/trusty-to-xenial-migration-guide

CI caching helps reduce the build duration. However, our
experimental and survey results show a conflicting interplay
with respect to caching. In particular, based on our experi-
mental results (Observation 3.3), CI caching may also reduce
build breakages, whereas our survey results indicate that
caching can rather cause occasional build breakages (e.g.,
due to outdated cached dependencies). Therefore, exploring
all prospects of a CI issue may help identify undesirable side
effects when taking a certain action.

Approaches for detecting/reporting the inefficient adop-
tion of CI configurations. Our results (Observation 3.2)
suggest that not all projects can benefit from certain devel-
opment or CI practices. For example, a project with fewer
dependencies is unlikely to benefit from the adoption of
CI caching. In addition, single-job projects are unlikely to
benefit from the fast finish build configuration. Therefore,
developers need approaches to identify whether certain CI
actions achieve their anticipated benefits, with the possible
interplay if any, given that the current build performance of
a project can impede such a practice from performing well.

5.3 Implications for CI services
CI service providers should continuously improve CI
documentation. Despite the details/examples provided by
CI services (e.g., TRAVIS CI19), certain CI configurations may
to unexpected build performance, as our results show (e.g.,
Observation 2.2), expressed by a possible interplay between
build durations and breakages. Hence, side effects and
misconfiguring CI builds could be a result of unclear, inade-
quate, or misunderstood CI documentation.20 Therefore, CI
services should maintain clear and updated documentation
to avoid misleading developers when configuring builds.

6 THREATS TO VALIDITY
In this section, we discuss the potential threats to the valid-
ity of our findings.

6.1 Construct Validity
Construct threats to validity are concerned with the degree
to which our analyses measure what we claim to analyze.
In our experimental study, we rely on the data collected
and computed mostly from TRAVISTORRENT and from the
GIT repositories that we clone from GITHUB. Mistakenly
computed values may influence our results. However, we
carefully filter and test the data to reduce the possibility
of wrong computations that may impact the analyses of
this study. In addition, survey respondents did not respond
to some open-ended questions, which might not provide
enough evidence about a certain experimental observation.
To address this issue, we distinguish the responses of re-
spondents who agree from the responses of those who
disagree with an observation.

Build breakages in our dataset refer to both errored and
failed builds, which can be caused due to different reasons.
However, prior CI research considers error and failed builds
as broken [10, 13, 21, 23]. In addition, metrics used in our
regression models can capture the differences between build
errors and failures. For example, if a metric is associated

19. https://docs.travis-ci.com
20. https://github.com/travis-ci/travis-ci/issues/5700

https://docs.travis-ci.com/user/precise-to-trusty-migration-guide
https://docs.travis-ci.com/user/trusty-to-xenial-migration-guide
https://docs.travis-ci.com
https://github.com/travis-ci/travis-ci/issues/5700
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with only build errors but not build failures, it would show
no significance in our models. Yet, distinguishing factors
that may co-occur with build errors from those that co-
occur with build failures is interesting but remains to be
investigated in future research. Moreover, our study does
not make distinction between builds of different project
branches, which might make the generalization of median
build durations and breakage ratio across branches mislead-
ing. Though some branches might be created to experiment
with new features or bug fixing, developers still need to
investigate the causes of any anomalous build performance
among these branches to ensure well-performing builds
when merging with the main branch. We should also note
that builds belonging to the main branches of the projects
in our dataset are dominant, representing over two thirds
(72%) of all builds, and there is no sufficient evidence that
build breakage ratios differ across branches. Therefore, we
believe that controlling for branching in our experiments is
less likely to affect our overall conclusions, but is worth in-
vestigating in the future. Finally, while build durations may
vary within a project, the main objective of our study is to
construct a holistic view of the overall build performance in
the studied projects. Moreover, we accounted for differences
in build stages (installation, script, and deployment), envi-
ronments, or test density between different project branches
by including relevant metrics that correspond to them in
our regression models (see Table 1). Future research should
further extend our analyses to investigate interplay across
build environments or project branches.

6.2 Internal Validity
Internal threats to validity are concerned with the ability to
draw conclusions from the relation between the indepen-
dent and dependent variables. In our experimental study,
we investigate the association between 18 project-level and
40 build-level metrics and four build states. In particular,
we use logistic regression to model the differences between
project quadrants. However, we are aware that these metrics
are not fully comprehensive. Using additional metrics may
affect our results. In addition, in the cases where two met-
rics are highly correlated, deciding which metrics to keep
and which metrics to remove in our models may have an
impact on the results obtained from the models. To make
our results reproducible, we make our choices of selected
metrics explicit for all the pairs of highly correlated metrics.

The respondents of our survey study are software devel-
opers who have experience with TRAVIS CI and GITHUB.
However, the responses we obtained might not reflect cur-
rent CI practices. To mitigate this issue, we targeted devel-
opers who have recent contributions to the projects in our
dataset. Moreover, the questions about the possible asso-
ciation of project characteristics with both build durations
and breakages might make respondents hesitant, especially
if one characteristic is believed to be associated with one
performance measure but not the other. However, we ex-
pect respondents to agree or disagree with this observation
depending on how many characteristics they believe to
have such a relationship. If one characteristic is related but
another characteristic is not, then we expect respondents
to give a ‘Neutral’ response. Finally, our survey does not
define some terms (e.g., build performance and fast finish)

as we assume respondents to have experience with CI.
Nevertheless, this could lead respondents to have miscon-
ceptions about the experimental observations in question.
To address this issue, we perform a manual analysis of
open-ended responses, thus enabling the identification of
any misconceptions that might have occurred.

6.3 External Validity
External threats are concerned with our ability to generalize
our results. Our experimental study is based on builds
collected from 588 GITHUB projects that are linked with
TRAVIS CI. To mitigate this threat, we include projects that
have larger numbers of builds spanning up to ten years.
Yet, we cannot generalize our conclusions as more projects
with different characteristics should be investigated. Hence,
a replication of our study using projects written in other
programming languages or linked with other CI services
is important to reach more general conclusions. Moreover,
experimental observations are verified using a developer
survey, which is responded to by 139 respondents. Though
such a response rate can be relatively low, which could
be due to our large number of open-ended questions, we
ensure that the developers we contacted span across the
majority (94%) of the studied projects. Given the anonymity
of the responses, we are unable to differentiate between
respondents and non-respondents to the survey. Never-
theless, the survey results show that respondents cover a
variety of demographics, in terms of development and CI
experience, roles, and locations, thus making our observa-
tions supported by a wide range of viewpoints. Finally,
some of the survey questions might introduce bias to the
analyzed responses. In particular, one of our demographic
questions confuses gender with sex and does not provide an
option for non-binary genders and used ‘Other’ and ‘Prefer
not to answer’ instead. However, there was no intentional
preference towards a specific gender in our survey study,
but we rather followed a similar practice in the literature [41,
42]. We expect respondents of non-binary genders to choose
‘Other’. Further, all our survey questions were reviewed
and approved by the General Research Ethics Board at the
academic institution where this research is conducted.

7 RELATED WORK
In this section, we summarize research related to build du-
rations and breakages while highlighting our contributions.

7.1 Studies on CI build durations
Much research has studied build durations [4–9, 14, 15].
Rasmusson [4] reported that team spirits are negatively
impacted when builds take longer to generate. Rogers [5]
reported that long build durations can considerably inter-
rupt software development. Brooks [6] and Hilton et al. [8]
reported that ten minutes is the most acceptable build
duration that developers may desire. However, recent stud-
ies [9, 15] reported that only 16% of CI builds have
durations under ten minutes. Moreover, prior studies re-
ported recommendations for developers to reduce the
build duration, such as performing the integration once a
week [5] or splitting large builds into smaller builds [7]
Hilton et al. [8] reported that developers reduce the duration
of CI builds by eliminating unnecessary dependencies or
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tests. Ghaleb et al. [9] have investigated the reasons behind
long build durations and reported the best practices to
generate timely builds.

Despite the valuable research on build durations, it is
unclear whether reducing the build duration would have
consequences on build breakages. In our study, we investi-
gate how maintaining timely builds may have a positive or
negative side effect on build breakages.

7.2 Studies on CI build breakages
Prior research has studied build breakage modeling [10–
12, 43, 44]. Jin and Servant [45] have proposed an ap-
proach to reduce the cost of CI builds while by running
fewer builds (those that are likely to fail), while skipping
builds for changes that are likely to pass. The authors
found that project size, in terms of lines of code and tests,
and CI lifespan are the most associated factors with build
breakages. Rausch et al. [10] have studied the impact of
16 metrics on build breakages. The authors observed that
the complexity of changes and historical breakage ratio are
strongly associated with build breakages. Saidani et al. [46]
have used evolutionary search to predict build breakages.
The authors found that team size and types of changed
files are associated with build breakages. Jain et al. [43]
have performed a causation analysis of build breakages and
also found that larger team sizes make more breakages.
In addition, the authors observed that their findings are
not sensitive to differences in programming languages or
projects. Conversely, Islam et al. [44] found that project and
team sizes are not associated with build breakages. Instead,
the authors found that the building tools and complexity of
changes are associated with build breakages.

Despite the valuable research on build breakages, little is
known about whether fixing a build breakage may impact
the build duration. In our study, we model build breakages
with build durations together to investigate how likely they
impact each other.

7.3 Studies on CI build durations and breakages
Previous research has studied build durations and build
breakages independently. For example, Vassallo et al. [14]
have studied (a) the evolution of build durations and (b) the
frequency of breakages in the master repository branches.
Wagner et al. [15] have performed independent analyses
on the proportion and frequency of build durations and
build breakages. Ghaleb et al. [9] have studied how build
durations of broken and passed builds can vary. Pan et al. [47]
have evaluated techniques and features used to reduce the
build duration by selecting and/or prioritizing tests that
are likely to break the build and found that build history
is significantly more important than code coverage and
complexity.

In summary, independent analyses on build durations
and breakages may lead to unexpected build performance.
In our study, we investigate both the build duration and
build breakage and the possible interplay between them.

8 CONCLUSION

In this paper, we conduct an empirical study to investigate
the interplay between reducing build durations and build

breakages. In particular, we study (1) which project charac-
teristics are associated with build durations and breakages;
(2) the most important build-level metrics that are associated
with build durations and breakages; (3) the actions that help
developers generate satisfactory builds; and (4) whether
software projects undergo build state switches throughout
the development lifetime. Moreover, we conduct a user
study with software developers who contribute to the
projects in our dataset, and thus have experience with CI,
to get their feedback on our experimental observations. We
summarize the key findings of our study as follows:

• Actions to improve the build performance of a project
are dependent on the context and current build perfor-
mance of that project.

• Project characteristics (e.g., project maturity, age, and
build configuration ratio) have significant associations
with build performance.

• Metrics that are commonly known to be associated with
one build performance measure (e.g., the build dura-
tion) can also have positive or negative associations
with the other measure (e.g., the build breakage).

• Developers should keep an eye on CI builds as build
performance is subject to change as a result of changes
to software development or building practices.

In summary, our experimental results show an evident
interplay between build durations and breakages, with dual
or inverse side effects. The majority of our experimental
observations are confirmed by survey results, which provide
useful insights, though some survey responses disagree
with some of our experimental observations.

Feedback from survey respondents indicates that,
though build performance can be improved using
workarounds, developers should instead focus on address-
ing the root causes of CI build problems. Therefore, we
encourage researchers and CI service providers to supply
developers with more tools and guidelines to increase their
awareness of the possible interplay between CI build dura-
tions and breakages.
Future work. We aim in the future to further extend our
study to include more CI practices from industrial projects
to investigate whether our findings would hold. We also
plan to expand our empirical analyses to explore CI building
practices in other commonly adopted CI services, such
as GITHUB ACTIONS, CIRCLECI, JENKINS. Finally, future
research should control for project branching to investigate
whether our findings hold across different branches and
under different software development paradigms.
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[15] Wagner Felidré, Leonardo Furtado, Daniel da Costa, Bruno Car-
taxo, and Gustavo Pinto. Continuous integration theater. In Pro-
ceedings of the 13th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 1–10, 2019.

[16] Moritz Beller, Georgios Gousios, and Andy Zaidman. TravisTor-
rent: Synthesizing Travis CI and GitHub for full-stack research
on continuous integration. In Proceedings of the 14th International
Conference on Mining Software Repositories, pages 447–450, 2017.
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