
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study of Emergency Updates for Top
Android Mobile Apps

Safwat Hassan · Weiyi Shang · Ahmed
E. Hassan

Received: date / Accepted: date

Abstract The mobile app market continues to grow at a tremendous rate.

The market provides a convenient and e�cient distribution mechanism for up-

dating apps. App developers continuously leverage such mechanism to update

their apps at a rapid pace. The mechanism is ideal for publishing emergency

updates (i.e., updates that are published soon after the previous update). In

this paper, we study such emergency updates in the Google Play Store. Exam-

ining more than 44,000 updates of over 10,000 mobile apps in the Google Play

Store, we identify 1,000 emergency updates. By studying the characteristics

of such emergency updates, we find that the emergency updates often have

a long lifetime (i.e., they are rarely followed by another emergency update).

Updates preceding emergency updates often receive a higher ratio of negative

reviews than the emergency updates. However, the release notes of emergency

updates rarely indicate the rationale for such updates. Hence, we manually

investigate the binary changes of several of these emergency updates. We find

eight patterns of emergency updates. We categorize these eight patterns along

two categories “Updates due to deployment issues” and “Updates due to source

code changes”. We find that these identified patterns of emergency updates are

often associated with simple mistakes, such as using a wrong resource folder

(e.g., images or sounds) for an app. We manually examine each pattern and

document its causes and impact on the user experience. App developers should

carefully avoid these patterns in order to improve the user experience.

Safwat Hassan, Weiyi Shang, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
Queen’s University
Kingston, Ontario, Canada
Tel.: +1 613-533-6802
E-mail: {shassan, swy, ahmed}@cs.queensu.ca

2 Safwat Hassan et al.

1 Introduction

The mobile app market is continuously growing and evolving. Research on

mobile app markets reports that in July 2015 more than 3.9 million mobile

apps are available for users across the di↵erent mobile app stores [70]. There

exist more than 1.2 billion mobile app users worldwide and the number of

users continues to grow at a very fast pace [48]. ABI research estimates that

mobile users downloaded 70 billion apps in 2013 [1].

Mobile app stores, such as the Google Play Store, provide a unique dis-

tribution mechanism to facilitate the release and deployment of app updates.

When a developer publishes an update for their app, all the current users of the

app can automatically receive the update within the same day [72]. Developers

extensively leverage this low cost distribution mechanism in order to rapidly

publish updates. Such a distribution mechanism eases the shift towards faster

update cycles [40,44]. However, frequent updates may disturb users, such that

some corporations (like Microsoft [77]) opted to reduce the frequency of their

updates based on user feedback.

The distribution mechanism enables the rapid release and deployment of

emergency updates for mobile apps. Emergency updates are updates that are

released soon after the previous update. For example, the “OPM Alert”1
app

has an update on February 4

th
2014 and an emergency update on the following

day (February 5

th
2014).

However, to the best of our knowledge, there exist no studies that explore

such emergency updates. In this paper, we perform an empirical study on

the emergency updates for the top apps in the Google Play Store. Our study

focuses on the top 12,000 free-to-download apps (according to the Distimo’s

top popular apps report in 2013 [18], these top free-to-download apps are

distributed among 25 di↵erent categories). We choose to study these apps,

since updates to these top apps impact a large number of users. Moreover,

such mature apps are less likely to exhibit very frequent updates. Hence, we

can easily identify emergency updates. We rank the emergency nature of each

update by measuring the ratio of the lifetime of its preceding update versus

the median lifetime of an update for that particular app (we call this metric,

the emergency ratio of an update).

We study the top 1,000 emergency updates (according to our aforemen-

tioned emergency ratio metric). Our study of the characteristics of the top

1,000 emergency updates, shows that emergency updates often have a long life-

time (i.e., they are rarely followed by another emergency update). The lifetime

of an emergency update is on average 2.25 times longer than the median life-

time of all non-emergency updates of an app. Hence, users should install these

emergency updates and not worry about another emergency update following

the emergency update. In addition, we find that developers rarely mention the

reasons of emergency updates in their release notes. 63.4% of the emergency

updates do not include any useful information about the rationale for the up-

1 https://play.google.com/store/apps/details?id=gov.opm.status

An Empirical Study of Emergency Updates for Top Android Mobile Apps 3

dates in their release notes. We find that the ratio of negative reviews for the

update preceding an emergency update is often higher than the ratio for the

emergency update.

To further understand emergency updates, we manually examine the de-

compiled code and files in the binaries (apk files) associated with such emer-

gency updates and their preceding updates. Our manual analysis of 361 emer-

gency updates leads us to identify several common patterns for emergency

updates. We document eight patterns of emergency updates. These patterns

belong to two categories: 1) Updates due to deployment issues and 2) Updates

due to source code changes. We document the details of each pattern with

its root-causes, example updates, speed of repair, examples of user complaints

and lessons learned from the pattern.

The contributions of this paper are as follows:

1. This paper is the first study to empirically study the characteristics and

patterns of emergency updates for mobile apps.

2. Our detailed documentation of emergency updates can help mobile app

developers avoid these patterns before releasing updates for their mobile

apps.

Our work is a first step towards documenting such patterns and we expect

that future studies will extend these patterns and uncover new ones.

The rest of this paper is organized as follows. Section 2 describes the stud-

ied apps and illustrates our data collection process and study methodology.

Section 3 discusses the characteristics of emergency updates and Section 4

defines our approach for identifying patterns of emergency updates. Section 5

describes the identified patterns for emergency updates. Section 6 outlines the

limitations and threats to the validity of our study. Section 7 describes the

related work. Finally, Section 8 concludes our study.

2 Methodology

In this section, we describe the methodology of our study. First, we collect

apps from the Google Play Store. Then, we identify emergency updates from

the collected apps. Figure 1 illustrates an overview of the methodology of our

study.

2.1 Collecting the studied apps

We study the top free-to-download mobile apps in the Google Play Store.

Google Play Store is one of the world’s largest mobile app stores with mil-

lions of apps and billions of downloads [69, 70]. We study free-to-download

apps because the majority of the apps in the Google Play Store are free-to-

download [9]. In addition, we can only download binary files (apk file) from

such apps due to our limited budget. We focus on the most popular free-to-

download apps since these apps have many users and contain more updates

4 Safwat Hassan et al.

Google
 Play
Store

1. Collecting the studied apps

Collect
apps'

data over
12 months

Reviews and
release notes
of each update

Select
the top
 1,000

emergency
updates

Apk file of
each update

2. Identifying emergency updates
for each collected app

Over 10,000
top apps

App's data
including all

updates

Calculate
 emergency

ratio

Emergency
ratio of

 all updates

Select
12,000
Android
 apps

Fig. 1 An overview of the methodology of our study.

than the less popular apps. We select the top free-to-download mobile apps

using the Distimo’s top popular apps report in 2013 [18]. Distimo’s report

provides a list of the 400 top apps for each of the 24 non-Game categories.

In addition, Distimo’s report provides a list of 400 top apps for each of the

6 Game categories. In total, we collect 12,000 top free-to-download apps. We

use the Distimo’s published popular apps ranking in 2013 (one year before we

start our data collection) in order to ensure that the apps are more stable and

that the collected updates are not early updates of an app (such early updates

are likely to be rapid in nature).

In order to collect daily data about the studied apps, we crawl the Google

Play Store using a specialized store crawling library [2]. We collect the general

information of an app on a daily basis, such as its name, category, uploaded

apk file, and user reviews. We select the Samsung S3 as the mobile device to

download apps from the Google Play Store, as Samsung S3 is a very popular

mobile device (at the time of our study). If the crawler interacts with the

Google Play Store frequently, the crawler may be blocked by the Store due to

too many requests. Therefore, we use a timer to pause the crawler periodically

and visit the store page of a particular app only once a day.

The crawler runs during the study period of around 12 months starting

from November 26

th
2013 to November 18

th
2014. During the study period,

some apps were removed from the Google Play Store. Hence, we only collect

data for the 10,747 available top apps. During the study period, we collect the

apk files and user reviews for 44,113 updates. On average, each app has 4.11

updates during the study period and 6,894 apps published at least one update

during the study period.

2.2 Identifying emergency updates

In order to identify emergency updates, for each update Ui, we calculate the

lifetime of the update (Ui), as the time di↵erence (in days) between the update

date of the update Ui and the update date of the next update Ui+1.

In order to identify emergency updates, intuitively we consider an update

Ui as an emergency update, if the lifetime of the update Ui�1 is less than

An Empirical Study of Emergency Updates for Top Android Mobile Apps 5

Table 1 Mean and five-number summary of emergency ratio of the top 1,000 emergency
updates. The larger the emergency ratio, the longer the lifetime of the update preceding the
emergency update.

Update category Mean Min. 1st Qu. Median 3rd Qu. Max.

The emergency
update (Ui)

0.03 0.00 0.02 0.03 0.04 0.05

one day. However, some apps have a more frequent update cycle than other

apps. For example, The “Hola Free VPN”2
app has 69 updates during the

study period (the median update lifetime for this app is three days), while the

“Stock Watch: BSE / NSE”3
app has only three updates during the study

period (the median update lifetime for this app is 202 days). There are 200

apps that have a median update lifetime of less than a week.

Therefore, we cannot use one value as a threshold to determine whether an

update is an emergency update. Instead, we quantify the emergency nature of

an update using a metric named the Emergency ratio of an update. We define

the Emergency ratio of an update Ui as the ratio between the lifetime of the

Ui�1 update and the median lifetime of all the updates for that app.

Emergency ratio (Ui) =
lifetime (Ui�1)

Median lifetime of the updates for that app

(1)

The lower the emergency ratio, the higher the emergency nature of a particular

update. We rank the updates by their emergency ratio and we focus on the top

1,000 emergency updates with the lowest emergency ratios. Table 1 represents

the mean and five-number summary of emergency ratio of the top 1,000 emer-

gency updates. For example, the “Tweakker APN INTERNET MMS”4
app

has a median update lifetime of 124 days and the lifetime of one update (“ver-
sion 1.8.1”) is only one day (i.e., the emergency ratio for the following update

is 0.008). Such a low emergency ratio indicates that the following update is

very likely an emergency update.

Table 2 represents the mean and five-number summary for lifetime (in

days) of the updates that precede the 1,000 top most updates according to

their emergency ratio. We notice that 688 of the updates are followed by an

emergency update within one day and a large portion of updates are followed

with an emergency update within two days.

3 Characteristics of emergency updates

In this section, we study the characteristics of the top 1,000 emergency up-

dates. In particular, we focus on five aspects of emergency updates: their life-

2 https://play.google.com/store/apps/details?id=org.hola
3 https://play.google.com/store/apps/details?id=com.snapwork.finance
4 http://tweakker.com, the app was available during the study period but the Google

Play Store no longer hosts this app at the time of the writing of this paper.

6 Safwat Hassan et al.

Table 2 Mean and five-number summary for lifetime (in days) of the top 1,000 updates
(according to the emergency ratio of their following update).

Update category Mean Min. 1st Qu. Median 3rd Qu. Max.

The lifetime of the
update preceding the

emergency update (Ui�1)

1.79 1.00 1.00 1.00 2.00 21.00

Table 3 Our major findings (and their implications) on the characteristics of emergency
updates for top Android apps.

Lifetime of emergency updates Implications

Emergency updates have a long
lifetime.

Users should update mobile apps with the
emergency updates without being concerned
about another update showing up soon
afterwards.

Release notes of emergency

updates

Implications

Release notes of emergency updates
rarely provide a clear description
about the rationale for the update.

Developers should highlight the emergency
nature of an update and encourage users to
download it.

Version numbering of an

emergency update

Implications

There is no fixed numbering
convention for the emergency updates.

Developers may consider using version
numbers to indicate whether an update is a
major update or an emergency update.

Ratings of emergency updates Implications

The updates preceding the emergency
updates have more negative reviews
than the emergency updates.

It would be beneficial if users are told about
the recent rating of a newly available update
(relative to the apps rating for its prior
update) when users are informed of the
availability of the update.

time, the content of their release notes, their rating and their version number-

ing. Table 3 summarizes the major findings and implications of our findings.

3.1 Lifetime of emergency updates

We would like to examine whether emergency updates last for a long time, and

whether emergency updates are likely to be followed by additional emergency

updates. First, we compare the lifetime of emergency updates and the median

lifetime of an update of an app. We then study whether there is a statisti-

cally significant di↵erence between the emergency ratios of the update that

follows an emergency update and the update that follows a non-emergency

update. We use the MannWhitney U test (Wilcoxon rank-sum test) [23], since

the emergency ratio is highly skewed. The MannWhitney U test is a non-

parametric test which does not have any assumptions about the distribution

of the sample population. A p-value of 0.05 means that the di↵erence be-

tween the emergency ratios of the updates that follow an emergency update

and the emergency ratios of the updates that follow a non-emergency update

An Empirical Study of Emergency Updates for Top Android Mobile Apps 7

is statistically significant and we may reject the null hypothesis. By rejecting

the null hypothesis, we can accept the alternative hypothesis, which shows

that there is a statistically significant di↵erence between the emergency ratios

of the updates that follow an emergency update and the emergency ratios of

the updates that follow a non-emergency update.

Emergency updates have a long lifetime. We find that that on average

the lifetime of an emergency update is 2.4 times the median lifetime of all

non-emergency updates of an app. The p-value of the MannWhitney U test
Test is 0.01271, (i.e., less than 0.05) which shows that there is a statistically

significant di↵erence between the emergency ratios of the updates that follow

an emergency update and the emergency ratios of the updates that follow a

non-emergency update.

Nevertheless, we find 40 emergency updates (out of the 1,000 studied emer-

gency updates) that are followed by another emergency update. We find that

the minimum value of the emergency ratio of the update after the emergency

updates is only 0.01. For example, “Horoscope HD Free”5
app has an update

on March 30

th
2014, the development team published an emergency update

on the next day (March 31

st
2014). However, the development team forgot

to add the needed permissions for the modified code. Therefore, they publish

yet another emergency update on the next day on April 1

st
2014 to add the

missing permissions.

Our results suggest that users should update their mobile apps if an emer-

gency update is published as developers rarely follow an emergency update

with yet another one.

3.2 Release notes of emergency updates

We would like to better understand the rationale for emergency updates and

whether developers do inform their users about the rationale for such emer-

gency updates. We read the release notes for all 1,000 identified emergency

updates (Ui) and the updates preceding the emergency updates (Ui�1). Then

we identify the di↵erences in the release notes between an emergency update

(Ui) and the preceding update (Ui�1). Based on the di↵erences between the

two release notes, we determine whether the release note provides useful in-

formation about the rationale for the emergency update.

Around a third of the updates explain the rationale for the emer-
gency update in the release notes. We find that 36.6% of the release notes

explain what is fixed in the emergency update. For example, the “Body Fat
Calculator”6

app has an update on October 10

th
2014 and an emergency up-

date on the next day. The emergency update added text in the release notes

that describes the update as follows: “Version 3.2.1: Revised on-line guide did
not load properly on some old devices. Issue Fixed”.

5 https://play.google.com/store/apps/details?id=ch.smalltech.horoscope.free
6 https://play.google.com/store/apps/details?id=com.fullquieting.android.

FatCalc

Safwat Hassan

8 Safwat Hassan et al.

Two third of the updates do not have a clear description regard-
ing the rationale for the emergency update. We find that 63.4% of the

release notes do not include any useful information about the rationale for

the emergency update. 59.8% of the emergency updates use the same release

note as the previous update and 3.7% of the emergency updates changed their

release notes, however with very general descriptions, such as “Fix bugs and
add new features”.

We find that both apps with long or short update cycles rarely include

the rationale for the emergency update in their release notes. For example,

the “Emojidom: Chat Smileys and Emoji”7
app has a median update lifetime

of 20 days. An update of the “Emojidom: Chat Smileys and Emoji” app was

published on September 16

th
2014 and an emergency update was published

on the next day. Both updates have the exact same release notes. Similarly,

the “Sushi Bar”8
app with a long update lifetime of 409 days has one emer-

gency update without updating the release notes that are associated with that

emergency update.

We also investigate the release notes that are from the websites of the 361

studied apps with emergency updates. We find that 279 apps provide a link

to their website on their store page in the Google Play Store. We manually

checked the websites for these 279 apps and we find that only 18 apps provide

release notes on their web site. We find that such online release notes provide

no additional information over the release notes that are posted on the app’s

store page.

Our analysis suggest that developers should consider highlighting emer-

gency updates in their release notes in order to encourage users to download

these emergency updates.

3.3 Version numbering of an emergency update

We would like to understand whether the update version numbers of emergency

updates follow a certain format, in order to ease the further investigation of

emergency updates. We study the di↵erence between the version numbers for

the emergency update (Ui) and the update preceding the emergency update

(Ui�1).

There is no fixed numbering convention for emergency updates.
We define Version level as the number of digits that are separated by dots

(“.”) in a version number. In some cases, developers change the version num-

bers while keeping the same number of version levels (e.g., from version 2.32

to version 2.33). In other cases, developers use an additional version level for

their emergency updates relative to the version number of the preceding up-

date (e.g., from version 2.3 to version 2.3.1). Table 4 summarizes the di↵erent

changes to version numbers that we find in the emergency updates.

7 https://play.google.com/store/apps/details?id=com.plantpurple.emojidom
8 https://play.google.com/store/apps/details?id=com.roidgame.sushichain.

activity

An Empirical Study of Emergency Updates for Top Android Mobile Apps 9

Table 4 Study of version numbers in emergency updates.

Changes in the version numbers of emergency updates
% of

emergency
updates

The update preceding the emergency update and the emergency
update have the same exact version number.

11%

The emergency update has the same version level as the update
preceding the emergency update (e.g., version 5.77 and 5.78).

71%

The emergency update has an additional version level than the
update preceding the emergency update (e.g., version 7.3 and
7.3.1).

18%

From Table 4, we summarize the results as follows:

– In 11% of the emergency updates, the update preceding the emergency

update and the emergency update both have the same exact version
number.

– In 89% of the emergency updates, the update preceding the emergency

update and emergency update have di↵erent version numbers. In such

cases:

– 71% of the emergency updates have the same version level as the

update preceding the emergency update (e.g., version 5.77 and 5.78).

– 18% of the emergency updates have an additional version level than
the update preceding the emergency update (e.g., version 7.3 and 7.3.1).

Based on the obtained results, we find that users cannot know whether

an update is an emergency update just based on changes to version numbers.

However, developers may consider making better use of version numbering

patterns (and best practices) to indicate whether an update is a major update

or an emergency update.

3.4 Ratings of emergency updates

In order to study changes in the ratings to the updates preceding the emer-

gency updates. We focus on negative reviews (reviews with one or two stars

rating) as these reviews mainly contain user complaints [38, 53]. Among the

total 1,000 emergency updates, 363 updates have no reviews for the update

preceding the emergency update and 280 updates have too few reviews (with

a median of two received reviews for the update preceding the emergency

update). Therefore, we focus on the rest 357 updates to study the negative

reviews.

We define the ratio of negative reviews (RNR) for an app A at date d as

follows:

RNR (A, d) =

N(A, d)

T (A, d)

(2)

10 Safwat Hassan et al.

where N(A, d) is the number of negative reviews that are received at date d

for an app A, and T (A, d) is the total number of reviews that are received at

date d for an app A.

time

 The emergency update U
i

ED1 ED2 ED3

The update preceding the
emergency update U

i-1

BE

The second update preceding
the emergency update U

i-2

2BE

Fig. 2 An overview of the studied dates for an app A.

For each app A that has an emergency update, as illustrated in Figure 2,

we calculate the ratio of negative reviews for the app during the following five

dates:

– Date d2BE is the deployment date of the second update preceding the

emergency update.

– Date dBE is the deployment date of the update preceding the emergency

update.

– Date dED1 is the deployment date of the emergency update.

– Date dED2 is the following day to the deployment date of the emergency

update.

– Date dED3 is the second following day to the deployment date of the emer-

gency update.

In order to compare the ratio of negative reviews, we use the RNR(A, dBE)

i.e., the ratio of negative reviews on the deployment date of the update pre-

ceding the emergency update as a baseline. We compare the ratios of negative

reviews as follows:

Comparison2BE (A) =

RNR (A, d2BE)

RNR (A, dBE)
(3)

ComparisonED1 (A) =

RNR (A, dED1)

RNR (A, dBE)
(4)

ComparisonED2 (A) =

RNR (A, dED2)

RNR (A, dBE)
(5)

ComparisonED3 (A) =

RNR (A, dED3)

RNR (A, dBE)
(6)

where Comparison2BE (A) compares the ratio of negative reviews between

dates d2BE and dBE . The rest of the equations follow similar comparisons.

The updates preceding the emergency updates have more neg-
ative reviews than the emergency updates. We compare the ratio of

An Empirical Study of Emergency Updates for Top Android Mobile Apps 11

negative reviews in di↵erent days as illustrated in equations (3, 4, 5 and 6) for

all emergency updates.

Fig. 3 Boxplot for the calculated comparison metrics for emergency updates. The red line
in the figure shows the metric value 1. Metric values lower than 1 means that the update
preceding the emergency update has a higher ratio of negative reviews than this emergency
update.

Table 5 Mean and five-number summary of comparison metrics for emergency updates. A
value higher than one means that the ratio of negative reviews in the corresponding date is
higher than the date of the deployment of the update preceding the emergency update.

Metric name Mean Min. 1st Qu. Median 3rd Qu. Max

Comparison2BE 0.89 0.00 0.00 0.56 1.29 8.83
ComparisonED1 1.02 0.00 0.00 0.78 1.30 7.48
ComparisonED2 0.91 0.00 0.00 0.67 1.22 10.74
ComparisonED3 0.97 0.00 0.00 0.67 1.31 8.48

As shown in Table 5, the update preceding the emergency update (Ui�1)

has a higher ratio of negative reviews than the 2

nd
update preceding the emer-

12 Safwat Hassan et al.

gency update (Ui�2). Also we find that the update preceding the emergency

update (Ui�1) has a higher ratio of negative reviews than the emergency up-

date (Ui) in the 1

st
, 2

nd
, and 3

rd
deployment days. We notice that users still

complain during the days after issuing the emergency update since users may

have not downloaded the new update (the emergency update) yet. Interest-

ingly, for some emergency updates, users may prefer the issues not being fixed,

such as the emergency updates that are published to ensure that the app is

able to continue displaying advertisement (based on our manual reading of

user reviews).

Based on the observed results, it would be beneficial if users are told about

the recent rating of a newly available update (relative to the rating of the prior

update of the app) when users are informed of the availability of the update.

This would permit users to decide on whether they wish to update their apps

or not. For example, users might even configure their automated updaters to

only install updates with an improved rating.

4 Our approach for identifying the patterns of emergency updates

In this section, we present our approach for identifying the patterns of emer-

gency updates. In order to identify the patterns of emergency updates, as

illustrated in Figure 4, we leverage four data sources as follows:

1. The apk file for each update.

2. The release notes for each update.

3. The reviews associated with each update.

4. The F-Droid apps repositories data [20].

We explain the content of each source in the rest of this section.

4.1 The apk file for each update

First we unarchive the apk files of the emergency update (Ui), the two up-

dates preceding the emergency update (Ui�2 and Ui�1) and the update fol-

lowing the emergency update (Ui+1). We unarchive each apk file using the

Android-Apktool [8]. Each unarchived apk file contains four folders and one

AndroidManifest.xml file as follows [61]:

– Smali: This folder contains the source code files [59,61]. In order to obtain

readable source code, we converted the apk to jar using Dex2jar tool [17].

We decompiled the generated jar into java source code using the Class File

Reader (CFR) tool [14].

– Libs: This folder contains third-party libraries that are used by the mobile

app [61].

– Res: This folder stores the di↵erent resources that are needed by the app,

such as images (stored in “drawable” folders), layout, style, colors, and

configuration files for the various customizations that are used across the

app (e.g., the displayed text) [61].

A
n
E
m
p
irical

S
tu

d
y
of

E
m
ergen

cy
U
p
d
ates

for
T
op

A
n
d
roid

M
ob

ile
A
p
p
s

13

Release notes
for each

studied update

 All apk files for
emergency updates,
preceding updates
and following update

Decompile
apk file

Comparing the
emergency
update to
the update

before it

Changed
artifacts
for each
update

Filtering updates
with no dominant

change (i.e., changes
 are scattered across

 all file types)

● Updates where 25% of the update

changes are concentrated on a

single type of artifact (e.g., image).

● Updates where only one source code

 file is different.

● Updates that are one of the updates

 in a randomly selected sample (with

 a 95% confidence level and a 10%

 confidence interval) with a lower than

 or equal to median number of

 changed source code files.

Reviews for
each studied

update

Apps that have one of
the studied top 1,000
 emergency updates

Identifying
the patterns

 of emergency
updates

Identified
patterns

F-Droid apps
repositories

data

Fig. 4 Process for identifying patterns of emergency updates.

14 Safwat Hassan et al.

– Assets: This folder contains raw files that a developer may want to use

in the app, such as texture, audio, text, fonts, and game data files. The

raw data files can be stored either in the sub folder raw in the Res folder

(res/raw) or in the assets folder: Files in the raw folder need to be accessed

via the resource identifier, while files in the assets folder are accessed using

the Java filesystem API without constraints on the file names [33, 61, 65,

68,71].

– AndroidManifest.xml: The manifest file specifies the required configu-

ration for the Android platform for the proper execution of the app [4].

For example, the manifest file specifies the required Android SDK ver-

sion for the mobile app to work properly [7]. Developers also configure the

needed permissions [5] and the needed software or hardware features (such

as camera, Bluetooth, app widgets) [6] that are required by the app.

In total, we only encounter 56 apks where the unarchiving or decompilation

failed in our experiment.

We compare the decompiled binaries in the emergency update (Ui) and the

preceding update (Ui�1) to find what is changed in the emergency updates.

We define ten types of files: code, third-party libraries, images, layout, style,

colors, audio and video, displayed text, application configurations, and changes

in the AndroidManifest.xml file. Then we categorize the similarly changed files

together into one type, e.g., the images files are grouped together into image

type, all source code files are grouped into the code type and changed XML

elements in AndroidManifest.xml file as the AndroidManifest.xml change type.

After that, we count the number of changes in each type. For the artifacts that

are typically at the file level, e.g., figures and source-code files, we count the

number of files that are changed. For the artifacts that are not at the file level,

e.g., permissions and SDK version, we count the number of individual items

of the artifact. In particular, changes to the the AndroidManifest.xml are not

counted as only one change. Then we calculate the total number of changes in

the apk file as the total number of items changed in the AndroidManifest.xml

file and the total number of changed files (other than the AndroidManifest.xml

file). Finally, we calculate the percentage of changes in each type relative to

the total number of changes in the apk file.

We examine the decompiled source code files that are di↵erent between

the emergency update (Ui) and the preceding update (Ui�1). We find that the

median percentage of files that are the same between the two updates is 99.7%,

and the minimum percentage is 1.2%. We manually investigated the updates

with a very large number of source code files that are di↵erent to the files in

the proceeding updates (i.e., low percentage of unchanged files). In particular,

we rank the updates with the percentage of unchanged files across the two

updates. We find that the updates in the first quartile have up to 98.3% of the

files that are the same between the update and the previous one. We manually

investigate several of the updates in the first quartile. We find that there are

two reasons for the low percentage of unchanged code files across updates:

An Empirical Study of Emergency Updates for Top Android Mobile Apps 15

1. The low percentage of unchanged source code files is due to code obfusca-

tion, instead of actual code changes.

2. The app has too few app-specific code files and the rest of the code files

are library files (e.g., advertisement library files). Hence, the adoption of

a di↵erent library would lead to a very large percentage of changed source

code files in that particular update. For instance, the update of the “Fin-
gerprint Lock Free”9

app on May 3

rd
2014 contains only 1.2% of the code

files that are unchanged relative to its prior update. This update involves

changes to four out of nine app-specific source code files and 651 out of

654 third party advertisement libraries files.

Since around two thirds of the emergency updates do not specify the ratio-

nale for their update (see Section 3.2), we need to manually analyze some of

these emergency updates. In order to ease our understanding of the rationale

for an emergency update, we manually examine an emergency update if one

of the following three selection criteria hold:

– At least 25% of the update changes are concentrated on a single type of

artifact. For example, all of the files (100%) in the images type is changed

in the “Pediatrics”10
app on January 8

th
2014. Therefore, we manually

examine this emergency update. If there are no major changes to the ar-

tifacts, it would be very di�cult for us to deduce the root-cause of the

emergency update.

– There is only one code file that di↵ers (i.e., a new file, a removed old file or

a changed old file) between the emergency update (Ui) and its preceding

update (Ui�1), as any large amounts of source code di↵erences between

the two updates are likely due to code obfuscation. Furthermore, it is very

challenging for use to deduce the rationale for such large changes given

that we are using decompiled code and we have very limited knowledge of

the apps and their codebase.

– The update is one of the updates in a random sample of updates (with a

95% confidence level and a 10% confidence interval) that have lower than

or equal to median number of changed source code files. In order to create

the random sample, we count the median number of changed source code

files in the emergency updates and find that the median number of changed

source code files is four. We collect all 376 updates that have less than or

equal to four changed source code files and randomly select a sample of 77

updates for manual inspection. The size of our random sample achieves a

95% confidence level and a 10% confidence interval.

In our study, we examine the updates for which we can identify the rationale

for the changes without the need for the release notes. E.g., 1) updates where

at least 25% of the update changes are concentrated on a single type of artifact

(such as images, requested permissions, layout, colors, Android SDK versions),

9 https://play.google.com/store/apps/details?id=com.nb.fingerprint.lock.free
10 https://play.google.com/store/apps/details?id=com.texterity.android.

Pediatrics

16 Safwat Hassan et al.

2) updates with only one source code file being di↵erent, or 3) the random

sample of updates for manual inspection.

In total, we select 361 emergency updates to manually examine based on

our aforementioned selection criteria.

4.2 The reviews associated with each update

Google Play Store enables users to provide their reviews for each update of an

app. We manually examine the reviews that are associated with each studied

emergency update (Ui) and the preceding update (Ui�1).

4.3 The release notes for each update

Release notes are also one of the data sources that are used to study the

emergency updates. However, about 60% of the emergency updates use the

same release notes as their preceding update, and 3.7% of the emergency up-

dates only have general words for the emergency updates, such as: Hot-fix and
Various Bug Fixes (see Section 3.2).

In our manual process for identifying patterns of an emergency update,

first we start by reading the release notes for the emergency update and com-

paring the details that are mentioned in the release notes to the changed files

in the emergency update. If the release notes do not mention any useful de-

tails about the rationale for the emergency update, then we manually read

all the reviews associated with the emergency update (Ui) and the preced-

ing update (Ui�1). We excluded reviews that contain generic user complaints

and considered reviews that mention details that are related to each identified

pattern.

If the emergency update does not include useful release notes or reviews

that are explicitly related to the identified patterns, we manually compare

the changed files in the four updates (the emergency update (Ui), the up-

date following emergency update (Ui+1), and the two updates preceding the

emergency update (Ui�1) and (Ui�2)) in order to identify the rationale for

the change. For example, in order to identify that incorrect images were in-

cluded in a particular update (Ui), we compare the images content in the two

preceding updates (Ui�1) and (Ui�2) in order to see the content before the

emergency update, then we compare the emergency update with the preced-

ing update (Ui�1) in order to identify the changed images. Finally, we compare

the content of the updates (Ui) and (Ui+1) in order to ensure that the updated

files are the correct images that are still used in the following updates.

4.4 The F-Droid apps repositories data

The release notes of app updates may be short and with limited details (see

Section 3.2). In order to have more information about the update, we explore

An Empirical Study of Emergency Updates for Top Android Mobile Apps 17

another source of data to understand the patterns of emergency updates. In

particular, we find that 11 apps with emergency updates are hosted in a soft-

ware repository named F-Droid [20]. F-Droid provides a public collection of

di↵erent FOSS (Free and Open Source Software) apps. We collect all the avail-

able releases for the 11 apps from F-Droid. We search for the emergency up-

date (Ui) and the preceding update (Ui�1) releases. Then we collect the code

comment in the source code files and the commit messages, for the changed

files between the two releases for the updates (Ui) and (Ui�1). We collect the

repository release notes, which are di↵erent from the release notes shown in

the Google Play Store,

11
for the emergency update (Ui).

The releases of emergency update (Ui) or the release of the preceding up-

date (Ui�1) are not always explicitly tagged in the repository. In such cases,

we use the update time to find the related code commits for the emergency up-

date (Ui) and the preceding update (Ui�1). Then we use the commit messages

and code comments that are associated with these particular code commits to

understand the root-cause for the emergency updates.

We have the following three cases for the 11 apps that are hosted on F-

Droid:

1. The repository is not available. We find two updates where either the repos-

itory URL is not working or the repository does not store the commits for

the code changes during our study period.

2. The repository is available but we cannot identify the code changes to the

emergency update. We find three updates in this case.

3. The repository is available and we could benefit from the releases and code

changes in order to map the studied updates to the actual changed code.

We find six updates in this case.

Such results show that even though F-Droid provides much detailed develop-

ment information about mobile apps, data analytics on mobile apps cannot

rely solely on F-Droid due to its small scale and the quality of its data.

4.5 Manual inspection

We manually inspected all emergency updates that meet our aforementioned

selection criteria. In our process, we go through the following two steps:

– First step – identifying patterns of emergency updates. The first

and second author of this paper work together by manually examining all

di↵erences between all the associated updates. We examine the di↵erences

between the downloaded apks, release notes, F-Droid repositories data and

app reviews in order to know the issue that is fixed in each update. If

the issue is a new issue then we add it to the list of identified issues. We

iteratively examine all the updates until there are no more identified issues.

11 We refer to the release note collected from the Google Play Store as “release notes” and
the release notes collected from the apps repositories as “repository release notes”.

18 Safwat Hassan et al.

If there is disagreement during the issue identification process, the first two

authors together come to a consensus. In particular, we have 20 updates

which there is disagreement in the identified issues. After finalizing the list

of identified issues, we consider only issues that are fixed in more than one

update as patterns for emergency updates. The output of the first step is

the list of the identified patterns along with the updates that are related

to each pattern.

– Second step – identifying root-causes of each pattern. Similar to

the first step, the first and second author of this paper examine all the

updates associated with each pattern in order to study the root-causes for

each pattern. For each inspected emergency update, we use all available

data in order to identify the root-cause for the update. If we identify a new

root-cause for a certain pattern, we add this root-cause to the list of the

root-causes that are related to this pattern. We iteratively examine all the

updates in the pattern until there are no more identified root-causes.

5 Identified patterns for emergency updates

We could map 146 updates to certain patterns and we cannot identify the

patterns for the remaining 215 updates (361 in total). We identify two cat-

egories of emergency patterns including “Updates due to deployment issues”

and “Updates due to source code changes”. Each category consists of di↵er-

ent patterns. Tables 6 and 7 summarize the identified patterns for emergency

updates. For each pattern, we discuss the description of the pattern and the

root-cause of the pattern with some real-life examples. We also discuss how

fast developers address the root-cause problem of the pattern (as shown in

Table 8) and show some examples of user complaints. Finally, we discuss the

lessons learned from each pattern.

5.1 Updates due to deployment issues

We identify 68 emergency updates that are due to deployment issues: nine

updates that are done to address image quality issues, 18 updates that are

done to address image content issues, 13 updates that are done to address

inconsistent permissions, 18 updates that are done to address inappropriate

SDK versions and ten updates that are done to address incorrect debugging

mode.

Including low quality images

Pattern description:
An update is published to repair image quality (e.g., image resolution or image

brightness). If an emergency update (Ui) fixes the quality of the displayed

A
n
E
m
p
irical

S
tu

d
y
of

E
m
ergen

cy
U
p
d
ates

for
T
op

A
n
d
roid

M
ob

ile
A
p
p
s

19
Table 6 Patterns of deployment issues emergency updates.

Updates due to deployment issues

Pattern

Name

Description Root-cause Identified

updates

App names

Including low
quality images

An update is pub-
lished to repair
image quality
issues (image res-
olution or image
brightness).

1) Developers do not test the
quality of images on devices
with varying screen resolution.
2) Developers forget to test
newly added images.

9 “Read Unlimitedly! Kids’n Books”,“Chomp SMS theme
add-on”, “Learn Portuguese with Babbel”, “Learn French
with Babbel”, “Learn German with Babbel”, “Our Gro-
ceries Shopping List”, “Curso de Ingles Gratis”, “Naver”
and “Baby FlashCards for Kids”

Including in-
correct images

An update is pub-
lished to replace
the incorrect image
with the appropri-
ate one.

1) Developers of multiple mo-
bile apps use the wrong images
from their other apps.
2) Developers miss updating
old images.

18 “Camera ZOOM FX Buddy Pack”,“Pediatrics”, “Cam-
era ZOOM FX Halloween Pack”, “Navmii GPS USA
(Navfree)”, “Davis’s Drug Guide”, “10K Runner Trainer
FREE”, “C25K ©- 5K Runner Trainer FREE”, “On-
Live”, “Camera ZOOM FX Composites”, “Camera ZOOM
FX New Composites”, “Camera ZOOM FX Extra Props”,
“Camera ZOOM FX Props Pack”, “Camera ZOOM FX
More Composites”, “Camera ZOOM FX Picture Frames”,
“Camera ZOOM FX Cool Borders”, “Brain Age Test
Free”, “Police Lights and Sirens Pt.” and “Safeway”

Having incon-
sistent permis-
sions

An update is pub-
lished to remove
the request for not
needed permissions
or to request the
needed permissions
that are missing.

1) Developers use some permis-
sions during development but
some of these permissions are
no longer needed for the most
recent app update.
2) Developers forget to add
some of the needed permis-
sions.
3) Developers make mistakes
when defining customized per-
missions.

13 “Easy Uninstaller App Uninstall”, “Free Sports Radio”,
“Mobiletag QR & product Scanner”, “Higher One Mobile
Banking App”, “Mixology ™Drink Recipes”, “Bingo Fever
- Free Bingo Game”, “Spanish Translator” ‘One More
Clock Widget Free”, “OPM Alert”, “Evernote Widget”,
“Horoscope HD Free”, “AroundMe” and “AnyTimer Pill
Reminder”

Having inap-
propriate SDK
versions

An update is pub-
lished to fix the
needed SDK ver-
sion of the app.

1) Developers mistakenly lever-
age new features from a new
version of the SDK without
specifying the need of the new
SDK version in the most recent
app update.
2) Developers make a code
change and downgrade or up-
grade the target SDK version,
which is discovered to lead to
problems in the field.

18 “Guitar Lessons Free”, “Horoscope and Tarot”, “Con-
vert video to mp3”, “Mp3 Converter Free”, “Chinook
Book”, “Stock Watcher”, “Voxer Walkie Talkie Messen-
ger”, “Pyramid Spirits 3 - Slots” “Simple Notepad”,
“Useful Knots”, “DJ”, “FVD - Free Video Downloader”,
“BoothStache”, “UglyBooth”, “MixBooth”, “AgingBooth”,
“FatBooth” and “BaldBooth”

Incorrect de-
bugging mode

An update is pub-
lished to enable or
to disable the de-
bugging mode.

Developers need to enable or
disable the debugging mode.

10 “O�ce Calculator Free”, “MixologyTM Drink Recipes”,
“O↵road Legends”, “Foods That Burn Fat”, “Real Time
CPR Guide”, “Prenatal Ultrasound Lite”, “TAGstagram
- IG TAG searcher” and “VAT CALCULATOR”

2
0

S
a
fw

a
t
H
a
ssa

n
et

a
l.

Table 7 Patterns of source code changes emergency updates.

Updates due to source code changes

Pattern

Name

Description Root-cause Identified

updates

App names

Invoking un-
available APIs

An update is pub-
lished to check the
availability of APIs
before calling the
APIs..

Developers find that their app
crashes due to calling certain
features in Android APIs that
may not exist in some SDK
versions on user devices.

5 “justWink Greeting Cards”, “Couple Tracker -Mobile
monitor”, “DJ Control”, “Free Golf GPS APP - FreeCad-
die” and “Word Learner Vocab Builder GRE”

Advertisement
issues

An update is pub-
lished to ensure the
correct display of
advertisements.

1) Developers do not set the
correct identifier for the adver-
tisement.
2) Developers do not validate
how advertisements are loaded
and displayed in the app.

19 “Tractor Pull”, “KWCH 12”, “Pocket Tanks”, “Baja Tro-
phy Truck Racing”, “Make Up Salon!”, “LoveCycles - Pe-
riod Tracker”, “Drift Mania Championship Lite”, “Update
Samsung Android Version” and “Crazy Grandpa”

Un-handled ex-
ceptions

An update is pub-
lished to handle ex-
ceptions.

Developers do not handle all
possible exceptions that can
occur when users run the app.

54 “Photosphere Free Wallpaper”, “SlenderMan LIVE”,
“FrostWire - Torrent Downloader”, “”, “GROWLr: Gay
Bears Near You”, “Fast Burst Camera Lite”, “Zen Pin-
ball”, “Hersheypark”, “Harvest Time & Expense Tracker”,
“First Aid Emergency & Home”, “Flashlight + Clock”,
“FeaturePoints: Free Gift Cards”, “GPS Phone Tracker
Pro”, “Followers+ for Twitter”, “Buycott - Barcode Scan-
ner Vote”, “Highway Crash Derby”, “Next Music Widget”,
“GO Cleaner & Task Manager” and “Speed Card Free”

An Empirical Study of Emergency Updates for Top Android Mobile Apps 21

Table 8 The median speed of repair for all patterns of emergency updates.

Category Pattern name

Median
speed of
repair
(days)

Updates due to Including low quality images 1
deployment issues Including incorrect images 3

Having inconsistent permissions 1
Having inappropriate SDK versions 1
Incorrect debugging mode 2

Updates due to Invoking unavailable APIs 2
source code Advertisement issues 1
changes Un-handled exceptions 1

images in the update preceding the emergency update (Ui�1), we consider

that the emergency update (Ui) belongs to this pattern.

Root-causes:
We find three root-causes of this pattern:

1. Developers may not have the resources to verify the quality of images on

every single device on which their apps may run. The images may not be

of a suitable quality (e.g., resolution) for all mobile devices (especially for

mobile devices with high screen resolution).

2. Developers may forget that they included new images in an app and they

forget to test the quality of such new images.

3. Developers add images and icons without knowing whether users would

like the new images and icons.

Example updates:

– An update of the “Chomp SMS theme add-on”12 app on August 17

th
2014

has icons that are not comfortable for users (very bright). An emergency

update adjusts the images to be less fluorescent.

– An update of the “Baby FlashCards for Kids FREE”

13
app on November

25

th
2013 has images with sizes that are not suitable for all devices. An

emergency update adjusts the images sizes to be suitable for all devices,

especially for the devices with high-resolution screens.

Examples of user complaints:
We find user complaints (in the app reviews) for only one out of the nine

updates that are related to this pattern. The users become frustrated with the

image quality issues and complain about this pattern. The update of “Chomp

12 https://play.google.com/store/apps/details?id=com.p1.chompsms
13 https://play.google.com/store/apps/details?id=au.com.alexooi.android.

flashcards.alphabets

22 Safwat Hassan et al.

SMS theme add-on” app on August 17

th
2014 has an issue in the displayed

icons. Users complain about the icons in the app reviews, such as “Love the
app ever since I purchased it a while back ! The icon not so much.” and “Love
the update but not a big fan of the new icon”. The development team repairs

the icon images and publishes a new update with release notes “Thanks for
valuable user feedback, we appreciate it and have updated the icon to be less
fl(u)orescent!”.

Speed of repair:
As shown in Table 8, this pattern requires a median of one day to repair (i.e.,

the median lifetime for the update that precedes the emergency update is one

day). The short time to repair indicates that it is not hard for developers to

replace the image with ones of higher quality.

Lessons learned for developers:
Developers should examine the quality of the images when new images are

added to the mobile app or when the mobile app starts to support new devices

with di↵erent screen resolutions. Having an image of low resolution may not be

suitable for some devices with higher resolution screens. Developers should al-

ways consider making di↵erent versions of images with di↵erent quality to suit

the di↵erent devices. A recent study of user reviews have proposed approaches

to prioritize the devices that need to be tested based on the reviews [37]. De-

velopers may leverage such an approach to prioritize their e↵ort in order to

test the quality of images on various devices.

Prior research studies the relationship between the colors that are used

in products and the successfulness of the products [3, 10, 16, 60]. Tools have

been proposed to assist in evaluating whether the used colors in a product are

comfortable for end users [15, 49]. Developers may leverage results and tools

of the prior studies to select the most suitable colors for their apps.

Lessons learned for store owners:
Mobile app store owners can enhance the current review mechanism by en-

abling users to upload screenshots for their complaints. Moreover, app store

owners can augment their existing tooling to notify app developers about im-

ages that may not appear well on some devices so developers are aware of

the issue earlier (e.g., as part of the automated verification of an app that is

published by the store owners for each new update of an app before making

the update available on the store).

An Empirical Study of Emergency Updates for Top Android Mobile Apps 23

Including incorrect images

Pattern description:
An app has incorrect images. An update is published to replace the incorrect

images with the appropriate ones. If an emergency update (Ui) fixes the con-

tent of the displayed images in the update preceding the emergency update

(Ui�1), we consider that the emergency update (Ui) belongs to this pattern.

Root-causes:
We find two root-causes of this pattern:

1. Developers of multiple mobile apps mistakenly package incorrect images

across their other apps.

2. Developers forget to include updated images in a new update.

Example updates:

– The “Camera ZOOM FX Buddy Pack”, “Camera ZOOM FX Halloween
Pack”, “Camera ZOOM FX Composites”, “Camera ZOOM FX New Com-
posites”, “Camera ZOOM FX Extra Props”, “Camera ZOOM FX Props
Pack”, “Camera ZOOM FX More Composites”, “Camera ZOOM FX Pic-
ture Frames”, and “Camera ZOOM FX CoolBorders” apps have issues in

their updates on June 10

th
2014 when all these apps use the same set of

images. Developers had mistakenly replaced the images with Halloween

photos from the “Camera ZOOM FX Halloween Pack” app. The develop-

ers repair this issue by updating the images for each of their apps.

– Developers forgot to update the main introductory image for the app port-

folio of the “Pediatrics” app on January 6

th
2014. Developers replace the

wrong image with the correct image in an emergency update.

– The “Brain Age Test Free”

14
app stopped using the Heyzap advertisement

network [34] but the developers forgot to remove the Heyzap advertisement

in their image. They published an emergency update on July 31

st
2014

that removes all images that represents Heyzap. The release notes for this

update are “No more Heyzap”.

Examples of user complaints:
We find user complaints (in the app reviews) for only one out of the 18 updates

that are related to this pattern. The “Camera ZOOM FX Extra Props”15
app

has a user complaining that the di↵erent “Androidslide” apps have the same

content. The small number of reviews may be because not all users realize the

wrong image content.

14 https://play.google.com/store/apps/details?id=brain.age.analyzer
15 https://play.google.com/store/apps/details?id=slide.cameraZoom.extraprops

24 Safwat Hassan et al.

Speed of repair:
The median time to repair the updates with this pattern is three days (shown

in Table 8). In comparison to the pattern of “Including low quality images”,

this pattern takes a longer time to repair. We believe that the slower repair

pace may be due to the users not complaining about this pattern as often as

the pattern of including low quality image. The fewer complaints may cause

the developers to not realize the issue right after the update, or the developers

realize the issue but are not as hard pressed to repair it, given the low number

of complaints.

Lessons learned for developers:
There exist automated GUI testing tools for mobile apps, such as Robotium [55].

However, automated GUI testing on mobile apps is e↵ort consuming and chal-

lenging [35]. In order to avoid this pattern, developers need better automated

testing tools that can reduce their testing e↵orts. Developers might wish to

consider using di↵erent build environments for their di↵erent apps to ensure

that each app has separate resources.

Developers need better code analysis tools that track the dependency be-

tween two changed elements in the app (e.g., which parts of the code that

are related to which resources in the app) [30, 79]. For example, If develop-

ers change source code, tools can notify developers with a list of non-code

resources (e.g., images) that should be updated.

Lessons learned for store owners:
Mobile app store owners should augment their automated verification process

of new updates so that the process would examine all recent updates across a

single organization not just for the current app update. The app store may then

warn app developers about the repeated content (e.g., resources and configura-

tions) across their di↵erent apps. Such automated analysis might also help flag

spam apps (i.e., apps with similar content and very slight variations) [56, 57].

Having inconsistent permissions

Pattern description:
A mobile app requests a list of permissions. Some of these permissions may

not be actually needed or, on the other hand, some needed permissions are not

requested. An update is published to remove the request for the not needed

permissions or to request the needed permissions that are missing. If an emer-

gency update (Ui) fixes the requested permissions in the AndroidManifest.xml

file, we consider that the emergency update (Ui) belongs to this pattern.

An Empirical Study of Emergency Updates for Top Android Mobile Apps 25

Root-causes:
We find four root-causes for this pattern:

1. Developers do not examine whether all the requested permissions by the

app are actually needed. For example, developers sometimes use tools to

assist during development but these tools may require permissions to func-

tion correctly, however such permissions are not needed once the app is

published [75].

2. Developers may use some permissions during development but forget to

remove them before issuing their update.

3. Developers forget to add some needed permissions.

4. Developers restrict the permissions for certain SDK versions and discover

after issuing an update that the permission needs to be requested for all

SDK versions.

Example updates:

– An update of the “Free Sports Radio”16
app on March 8

th
2014 requests

several not needed permissions. The developers removed the not needed

permissions “Read External Storage”, “Write External Storage”, “Read

User Directory”, and “Write User Directory” in an emergency update.

– To repair an issue in an update of the “Higher One Mobile Banking App”17

app on April 29

th
2014, developers needed the “Read Phone State” per-

mission, which requests read access to the phone state. This permission is

not needed any more after the fix. However, developers of the “Higher One
Mobile Banking App” app forgot to remove the permission for this update.

An emergency update removes the permission since it is no longer needed.

– The “Spanish Translator”18
app has an update on November 11

th
2014 and

the update has unused permissions Read Phone State and Access Network
State. On the next day, the development team publishes a repair that

removes these permissions that are not needed.

– An update of the “One More Clock Widget Free”19
app on November 4

th

2014 was restricting the “Write External Storage” permission to certain

SDK versions. Developers discover that they need to request the “Write

External Storage” permission for all SDK versions. To repair this issue,

developers correctly reconfigure the permission request in an emergency

update by removing the “maxSdkVersion” attribute so the “Write External

Storage” permission is requested for all SDK versions.

– An update of the “Evernote Widget”20
app on May 16

th
2014 misses to re-

quest the “Read Data” and “Write Data” permissions. Developers publish

an emergency update to request these missing permissions.

16 https://play.google.com/store/apps/details?id=com.MyIndieApp.

FreeSportsRadio
17 https://play.google.com/store/apps/details?id=com.higherone.mobile.android
18 https://play.google.com/store/apps/details?id=pl.pleng.spanish
19 https://play.google.com/store/apps/details?id=com.sunnykwong.freeomc
20 https://play.google.com/store/apps/details?id=com.evernote.widget

26 Safwat Hassan et al.

Examples of user complaints:
We find that two out of 13 updates that are related to this pattern (the updates

for the “One More Clock Widget Free” and the “Evernote Widget” apps) have

user complaints.

The missed permissions introduces high severity issues as the app may

not work because of these missed permissions. Below are examples of user

complaints:

– The update of the “Evernote Widget” app on May 16

th
2014 misses to

request the “Read Data” and “Write Data” permissions. Users start to

complain that the updated app is not working. Users leave the following

reviews on the same day of the update, such as a review “Application No
longer working correctly since evernote update”, and another review with

title “Stopped working” and content “The new update does not work”.
Developers publish the emergency update that requests the missing “Read

Data” and “Write Data” permissions.

– The update for the “One More Clock Widget Free” app on November 4

th

2014 restricts the request for the “Write External Storage” permission to

some SDK versions. Users start complaining that they cannot open the app.

For example, user wrote a review on November 4

th
2014 with title “Was

good” and comment text “App was great till latest update, then wouldn’t
open. Will try again later”. Developers publish an emergency update on

the next day to fix this permission issue.

Speed of repair:
As shown in Table 8, the median time to repair the updates related to this

pattern is one day. The reason for this fast repair can be explained as follows:

– In the case where the emergency update removes the unneeded permissions,

we think the fast turnaround may be due to developers taking permission

requests very seriously. For example, according to a recent survey issued

on 2,272 participants, 49% of mobile app users do not download at least

one app due to privacy issues [19].

– In the case where the emergency update adds the missing permissions,

we find that reviews often report app crashes for missing to request the

needed permissions. The app crashing may be the reason for this fast speed

of repair.

Lessons learned for developers:
Developers should better track the requested permissions and their correspond-

ing source code or third party libraries. With strong and up to date traceability

links between requested permissions and the source code of an app or third

party libraries, developers can ensure that all requested permissions are needed

and all needed permissions are requested correctly [64, 66,67].

In order to track the inconsistency in the requested permissions, many

researchers introduced tools to verify the needed permissions [21, 24, 50, 78].

An Empirical Study of Emergency Updates for Top Android Mobile Apps 27

Developers should leverage the existing permissions tracking tools to identify

any inconsistency between the requested permissions and the app behavior.

Lessons learned for store owners:
Mobile app store owners should leverage the existing permission tools in order

to prevent app developers from issuing updates with unneeded or missing

permissions.

Having inappropriate SDK versions

Developers define the minimum and target SDK versions in the Android

Manifest file. The minimum SDK version represents the minimum SDK version

that needs to be installed on the mobile device in order to assure that the app

runs properly [7]. Users, who installed a later version of the Android platform,

can run the updated app. For example, if a user has SDK version 5.0 installed

on his mobile device and the app has a minimum SDK version 7.0, this update

will not appear to this user [7, 58]. Developers change (usually increase) the

minimum SDK version because they use new features that are introduced in

a certain SDK version. By upgrading the minimum SDK version to a higher

value, developers prevent the update from being installed on devices with lower

SDK versions. If the app runs on an older SDK version, the app may crash

because the app may call features that are not supported by the older SDK

version [58].

The target SDK version represents the SDK version that is targeted by

the development team [7]. Adjusting the target SDK version to a certain value

means that this SDK version is the version that development team use to

test the app. For example, if an app has a target SDK version lower than the

user’s installed SDK version, the Android platform may apply compatibility

behavior in order to make the app run in the same way as expected by app

developers [7]. For example, The “Honeycomb” version of Android provides a

set of themes called “Holo” themes, by identifying the target SDK version to a

lower version than Android Honeycomb, the Android platform will not enable

the “Holo” themes for these apps in order to prevent issues like drawing a

black text on a black background [7, 58].

We find 18 emergency updates that are due to issues related to SDK ver-

sions (either minimum or target SDK versions). Eight updates are done to

address the issue of missing to update an old SDK version and ten updates

are done to address the issue of using a wrong SDK version.

Pattern description:
A mobile app requires a certain SDK version to run, however the app fails

to specify the need for this SDK version in its AndroidManifest.xml file. An

update is published to fix the needed SDK version of the app. If an emergency

update (Ui) fixes the required SDK version of the app, we consider that the

emergency update (Ui) belongs to this pattern.

28 Safwat Hassan et al.

Root-causes:
We find two root-causes for this pattern:

1. A new version of the SDK often provides new features, such as additional

APIs. Developers may leverage such new features from a new version of

SDK. However, an update might miss specifying the need for a new SDK

version in the AndroidManifest.xml file.

2. Developers make a code change and downgrade or upgrade the SDK ver-

sion. After the update, developers discover that the SDK version change

introduces issues (e.g., menus do not appear) on some devices. Developers

perform an emergency update to correct the SDK version to the version

that is suitable for the new changes, or to revert back their new changes

and to continue using the original SDK version.

Example updates:

– An update of the “Stock Watcher”21
app on September 25

th
2014 misses

to change the target SDK version. Developers release an emergency update

on the next day in order to update the SDK version with release notes “Fix
the disappearing menu button on some devices”.

– An update of the “DJ”22
app on November 5

th
2014 increases the target

SDK version from 10 to 21. The developers discover an issue that the

menu key does not appear, such that users cannot shut down the app. The

developers repair the issue by reverting the SDK version back to 10.

Examples of user complaints:
We find that four out of the 18 updates that are related to this pattern (for

the “Voxer Walkie Talkie Messenger”23
, “DJ”, “AgingBooth”24

and the “Fat-
Booth”25

apps) have users complaining about symptoms that are related to

this pattern:

– The “Voxer Walkie Talkie Messenger” app on September 15

th
2014 does

not update the minimum SDK version. A user posts a review with the

title “Voxer freezing” and the following review content “After new update
voter is freezing and not letting me listen to full vox messages”. Developers

publish an emergency update on the following day to increase the minimum

SDK version from version 8 to version 10.

– The “AgingBooth” app has an update on June 20

th
2014 and users report

issues about this update. For example, a user leaves a review with title

“Crashed on first use” and content “Cannot use it. Let’s me take pic and

21 https://play.google.com/store/apps/details?id=com.mobileappsresearch.

stockwatcher
22 https://play.google.com/store/apps/details?id=com.spartacusrex.prodjlite
23 https://play.google.com/store/apps/details?id=com.rebelvox.voxer
24 https://play.google.com/store/apps/details?id=com.piviandco.agingbooth
25 https://play.google.com/store/apps/details?id=com.piviandco.fatbooth

An Empirical Study of Emergency Updates for Top Android Mobile Apps 29

then adjust markers. Then it closes unexpectedly for no apparent reason.
Uninstalling”, another user leaves a review with content “Force closes after
I take a picture, as I can see it(’)s doing the same for everyone else too”.
Because of the large impact on the user experience, the development team

publishes an emergency update to repair this pattern in two days.

– Before updating the “DJ” app with the emergency update, we observe

that the users complain that the app cannot shutdown. For example, a

user leaves the review “Since it(’)s for free but with add - you cannot shut
down anymore this app. Craps!!”. After the emergency update, the same

user confirms that the app is working well “NOW it works PERFECT!
GREAT technical support and best DJ app. THANKS”.

– The app “FatBooth” has an update on June 20

th
2014 and users complain

about this update. For example, a user writes a comment with the title

“Force close” and the following text: “Since last update it automatically
force closes”. Another user left a comment “I (t)take a picture, then go to
do it and it force close every single time. Stupidity”. The development team

published an emergency update to upgrade the minimum SDK version

from version 9 to version 10 and the target SDK version from version 20

to version 21.

Speed of repair:
The median time to repair the SDK version issues pattern is one day (as shown

in Table 8). The reason of this pattern being repaired fast is that this pattern

is easy to fix. Moreover, this pattern has a large impact on users since every

user with the inappropriate SDK version is impacted.

Lessons learned for developers:
To ensure the correct running environment of apps, developers must correctly

specify the minimum requirement of SDK version in the AndroidManifest.xml

file. However, there exist no automated techniques to ensure that the specified

minimum requirement of SDK version is the correct one. Therefore, for every

update of an app, developers need to verify the correctness of the specified

minimum SDK version. Automated techniques are needed to analyze the app

source code and identify the minimum SDK version that is needed for the

current code, then to notify the developers with any inconsistency between

the needed and the requested minimum SDK versions.

Prior research finds that updating to a new SDK version may be harmful

since the API change may lead to defects in mobile apps, leading to a negative

impact on the user ratings [13, 41]. Before updating the SDK version, devel-

opers need to understand the impact of the update. A thorough regression

testing process is needed to compare the behavior of an app with the old and

the new SDK versions.

Lessons learned for store owners:
Mobile app store owners need automated tools that warn developers if they

change the source code without updating the needed SDK version, or if the

new source code is not compatible with the specified minimum SDK version.

30 Safwat Hassan et al.

Incorrect debugging mode

Pattern description:
A mobile app uses debugging functionality to store information about the app

behavior. Developers find a need to enable or disable the debugging mode. An

update is published to change the debugging mode. If the emergency update

(Ui) changes app source code in order to enable or disable the debugging mode,

we consider that the emergency update (Ui) belongs to this pattern.

Root-causes:
We find two root-causes of this pattern:

– Developers forgot to disable the debugging mode. Developers publish an

emergency update to disable the debugging mode.

– Developers find that there is a need to store the debugging information in

order to track the app behavior, so an emergency update is published to

enable the debugging mode.

Example updates:

– Developers of the “O�ce Calculator Free”26
app notice that the app was

published with the debugging mode mistakenly enabled. An emergency

update is published on June 30

th
2014 to disable the debugging mode.

– Developers of the “MixologyTM Drink Recipes”27
app need to track debug-

ging information about the app. An update is published on July 2

nd
2014

to enable the debugging mode.

Examples of user complaints:
We did not find user complaints about this pattern. The lack of user complaints

is likely due to users not being aware of the debugging and with debugging not

having a large impact on the user experience with the app (e.g., performance).

Speed of repair:
As shown in Table 8, this pattern requires a median of two days to repair.

The short time to repair is most likely due to enabling or disabling debugging

information not requiring much e↵ort from developers.

Lessons learned for developers:
Developers should have a checklist to review the app configurations (such as

enabling or disabling the debugging mode) before issuing the updates, in order

to avoid the need for an emergency update.

26 https://play.google.com/store/apps/details?id=net.taobits.officecalculator.

android
27 https://play.google.com/store/apps/details?id=com.digitaloutcrop.mixology

An Empirical Study of Emergency Updates for Top Android Mobile Apps 31

5.2 Updates due to source code changes

We identify 78 emergency updates that are due to source code changes: five

updates are done to address invoking unavailable APIs, 19 updates are done to

address advertisement issues and 54 updates are done to address un-handled

exceptions.

Invoking unavailable APIs

Pattern description:
A mobile app does not consider the users’ installed SDK versions while call-

ing certain API features. App developers publish an emergency update that

enables di↵erent behaviors based on the availability of API. If an emergency

update (Ui) changes the source code to address the invocation of an unavail-

able API issue, we consider that the emergency update (Ui) belongs to this

pattern.

Root-cause:
The root-cause for this pattern is that developers fail to consider the availabil-

ity of an API before invoking it in their code.

Example updates:
An update of the “Word Learner Vocab Builder GRE”28

app on June 19

th

2014 has an issue in getting the app data using the Android “Context” object.

The issue exists because the app invokes APIs that are not available in some

versions of the Android SDK . An emergency update with version “2.3” is

published to handle the described issue with release notes “Version 2.3: Fixed
crash on Android 4.2 and above”.

Examples of user complaints:
We find complaints about the app crashing but we cannot be sure that the

complaints about app crashing are related to the code changes in the emer-

gency update.

Speed of repair:
As shown in Table 8, the “Invoking unavailable APIs” pattern requires a me-

dian of two days to repair. The “Invoking unavailable APIs” pattern needs

longer time to fix than the other code related patterns (e.g., “Un-handled ex-

ceptions”). The reason may be that the “Invoking unavailable APIs” pattern

needs more investigation and development e↵ort than the other source code

related patterns.

28 https://play.google.com/store/apps/details?id=com.wordLearner.Free

32 Safwat Hassan et al.

Lessons learned for developers:
We notice that developers handle this pattern by adapting the code to behave

in a di↵erent ways depending on the availability of APIs on the user device.

Development tools (e.g., development IDEs) can warn developers when their

code calls certain methods that are not provided for some SDK versions that

are configured by the app. Similarly, apps store owners can easily warn devel-

opers about such issues as part of their automated verification of new updates.

Advertisement issues

Pattern description:
A mobile app uses third party libraries to display advertisement. Developers

find an issue that is related to displaying advertisement. An update is published

to ensure the correct display of advertisement. If an emergency update (Ui)

changes app source code to fix issue in the calls to the ad libraries, we consider

that the emergency update (Ui) belongs to this pattern.

Root-causes:
We find two root-causes of this pattern:

1. Developers use a pseudo value for the ad identifier and forget to update

the ad identifier with the correct value.

2. Developers do not validate how the ad will be loaded and displayed in the

app.

Example updates:

– An update of the “Tractor Pull”29 app on May 11

st
2014 has an issue

in setting the ad identifier for the displayed advertisement. An emergency

update is published on the next day to fixe the ad identifier value.

– An update of the “KWCH 12”30 app on June 5

th
2014 does not handle

issues related to the rendering of advertisement. An emergency update is

published on the next day to handle such issues. The emergency update

adds retry mechanisms to load advertisement.

Examples of user complaints:
We did not find user complaints about advertisement in the updates that pre-

cede the emergency update. On the other hand, we find 128 recent reviews

for the emergency updates that are related to this pattern where users com-

plain about the intensive existence of the advertisement in the app. Some users

threaten to uninstall the app. For example, on the same day of the emergency

29 https://play.google.com/store/apps/details?id=com.anddgn.tp.main
30 https://play.google.com/store/apps/details?id=com.newssynergy.kwch

An Empirical Study of Emergency Updates for Top Android Mobile Apps 33

update of the “Tractor Pull” app, users posted negative reviews such as “Fun
game but since last update get killed with ads! Hard to run gas peddle when a
stupid ad covers right half of screen! Uninstall!!!”.

Speed of repair:
As shown in Table 8, this pattern requires a median of one day to repair. The

short time to repair may be because displaying advertisement is one of the

main sources of revenue for the free-to-download app developers.

Lessons learned for researchers:
More research needs to be done in order to provide recommendation about the

common usability issues (e.g., best practices and common pitfalls) surrounding

the integration of advertisements in mobile apps.

Un-handled exceptions

Pattern description:
Mobile app code does not handle all possible scenarios and app crashes in

certain scenario. An update is published to handle exceptions. If an emergency

update (Ui) changes app source code to handle some previously unhandled

exceptions that may be thrown by the code, we consider that the emergency

update (Ui) belongs to this pattern.

Root-cause:
The root-cause for this pattern that developers do not handle all possible

raised exceptions that may occur when users run the apps.

Example updates:

– An update of the “Photosphere Free Wallpaper”31
app on June 27

th
2014

has an issue in setting the scroll speed for users if the mode is auto scroll.

The app code does not handle the case if the user does not provide scroll

speed value. An emergency update is published on the next day (on June

28

th
2014) to handle the exception by setting the scroll speed to a default

value with release notes “Fixed issue with auto scroll”.
– An update of the “SlenderMan LIVE”32

app on April 3

rd
2014 has an

issue in the code that opens the camera and sets the orientation of the

displayed preview of the camera images. The app code does not handle

the case of an exception occurring while opening and setting the camera

preview. An emergency update is published on the next day (on April 4

th

2014) to handle the exception of the un-handled cases with release notes

“Fixed upside down camera !”.

31 https://play.google.com/store/apps/details?id=fishnoodle.photospherewp_free
32 https://play.google.com/store/apps/details?id=www.agathasmaze.com.

slendermanlive

34 Safwat Hassan et al.

– An update of the “First Aid Emergency & Home”33
app on December 8

th

2013 has an issue in loading the In Case of Emergency (ICE) profile data.

The issue occurs because the code does not handle the case of the user

not providing all the requested information. An update is published on the

next day to handle the null cases with release notes “Fixed crash related
ICE Profile”.

– An update of the “Flashlight + Clock”34
app on June 9

th
2014 has an issue

in setting the visibility of component as the code does not handle case if

component is null. An update with version “1.1.2” is published on the next

day to handle the null cases with release notes “Version 1.1.2 Crash bug
fixed”.

– An update of the “FeaturePoints: Free Gift Cards”35
app on April 30

th

2014 has an issue in connecting to Google+ as the code does not handle

the case of the user data being null. An update is published to handle the

null cases with release notes “Fixed crash when connecting to Google+”.

Examples of user complaints:
We find some user complaints about the app crashing but similar to the “Invok-

ing unavailable APIs” pattern, it is di�cult to be sure that these complaints

are related to exceptions.

Speed of repair:
As shown in Table 8, this pattern requires a median of one day to repair. The

short time to repair can be explained as this pattern causes the app to crash

with the un-handled exceptions.

Lessons learned for developers:
Although un-handled exceptions may produce critical issues, research illus-

trates that un-handled exceptions are not often identified during code review.

For example, Bacchelli et al. [11] study code review comments for Microsoft

code. Bacchelli et al. find that only 4% of code review comments are about

handling exceptions. Developers need to perform more e�cient code review

mechanism and possibly automated tools in order to avoid the occurrence of

this pattern.

We find 35 of the 54 updates that are related to this pattern are due

to unhandled null pointer exceptions. There exists a slew of tools that can

identify possibly unhandled null pointer exceptions [22]. Developers and store

owners should make use of static analysis tools to avoid the need for emergency

updates.

33 https://play.google.com/store/apps/details?id=com.nikolay.arfa
34 https://play.google.com/store/apps/details?id=flashlight.led.clock
35 https://play.google.com/store/apps/details?id=com.tapgen.featurepoints

An Empirical Study of Emergency Updates for Top Android Mobile Apps 35

6 Limitations and threats to validity

In this section, we discuss the limitation and threats to validity of our findings.

6.1 Construct Validity

We select 1,000 emergency updates based on the emergency ratio that is de-

fined in this paper. The emergency ratio depends on the number of days after

the last update and the median update lifetime. As illustrated in Table 1, the

lifetime for the updates preceding the emergency updates is less than or equals

to 5% of the median lifetime of the app. Such a low emergency ratio indicates

that such updates are most likely emergency updates. However, some mobile

apps may have an unstable update cycle. An update with a low emergency

ratio may not be an actual emergency update. Including other factors in defin-

ing the emergency updates such as considering the standard deviation of the

release cycle is another possible alternative definition of emergency updates.

We leverage a heuristic to identify emergency updates. The heuristic may

not be 100% accurate. There is a chance that a developer might release two

updates back to back even though the second update is not urgently needed.

However we feel the chances of such rapid updating is very low. For example,

as illustrated in Table 2 we find one app (for the “AutoZone”36
app) where the

lifetime for the update preceding the emergency update is 21 days, while its

median life time is 568 days. However, for this particular update, many issues

are fixed. The release notes are as follows: “Version 2.0.1 Multiple bug fixes,
including: * Accurate product fitment notes. * AutoZone Rewards login issue.
* Free Repair Guide images issue. * Improved accuracy with barcode scan-
ning”. Therefore, such an update is not included in our manual investigation

of patterns of emergency updates.

We manually identify the patterns of emergency updates. Although we

examine the decompiled apk file artifacts of the updates, the release notes and

the user reviews, we are not experts in the development of these mobile apps.

Our observation can be biased by our knowledge. To minimize the bias, the

first two authors work together during the manual investigation. However, to

further address this threat, interviews and users studies of such mobile apps

are required to better understand the rationale for these emergency updates.

6.2 Internal Validity

Although we find eight patterns of emergency updates, not all studied emer-

gency updates follow one of our eight patterns. In short, we do not consider

our patterns as a comprehensive set of emergency updates patterns. Instead,

our work is a first step in creating a richer and more complete set of such

36 https://play.google.com/store/apps/details?id=com.autozone.mobile

36 Safwat Hassan et al.

patterns. As more updates are examined, we expect that more patterns will

emerge.

The key contribution of our study is to raise awareness about the fact that

many of these emergency updates share common reasons and by documenting

such patterns we hope to assist in improving the quality assurance processes

for app updates.

6.3 External Validity

Our study is based on the 10,747 top free-to-download apps from the Google

Play Store. Distimo lists the top apps from each category of apps for the US

market. There might be other top apps in other areas of the world. Including

other mobile app stores, such as iOS store, and including the top popular

apps in di↵erent countries (not only the US) would complement our study.

Our results are based on running a Google Play Store crawler for 12 months.

Our empirical study may be improved by including the mobile apps’ data from

a longer run period of our crawler. As any work that identifies patterns, our

work is a first step towards creating a catalogue of such patterns. We expect

that more patterns will emerge over the years. Although we find other issues

that are fixed in emergency releases (e.g., we find one update that fixes the

displayed text of a field), we did not formally document them as patterns since

we find too few instances of them to claim a recurring pattern. Future studies

should explore the generality of these patterns.

The Google Play Store crawler acts as a Samsung S3 device in order to

download apk files. Some apps may have multiple apk files for di↵erent mobile

devices. Therefore, other mobile devices may download di↵erent apk files from

such apps. Crawling Google Play store with another device may complement

our study.

The Google Play Store limits the number of retrieved user reviews for an

app. Such a limitation is also noted by recent research by Martin et al. [45].

In our study we try to overcome this issue by running the Google Play Store

crawler on a daily basis to ensure that we get as many reviews as possible (since

the store will not return more than 500 new reviews since our last crawl).

Our study focuses on the top free-to-download apps since free-to-download

apps are the majority of the apps in the Google Play Store. Moreover, free-to-

download apps may not be totally free as some free-to-download apps include

paid features through in-app purchases or subscriptions. Our study may benefit

from including the top non-free apps and comparing the di↵erence in the

emergency updates of both free-to-download and non-free apps. However, one

would need access to the apk files of these non-free apps by purchasing such

apps, requiring a substantial amount of funds.

Our findings are based on a study of the top 1,000 emergency updates.

The characteristics and patterns of the emergency updates that are not in the

top 1,000 may be di↵erent from our findings. Our study may be improved by

examining more emergency updates.

An Empirical Study of Emergency Updates for Top Android Mobile Apps 37

7 Related work

In this section, we present prior research that is related to our work. In par-

ticular, we focus on prior research in the area of 1) rapid releases, 2) bugs in

mobile apps, and 3) customer reviews of mobile apps.

7.1 Rapid Releases

Many organizations are moving from a traditional slower release cycle to a

rapid release cycle [39, 43, 63]. For example, Mozilla Firefox has shifted from

releasing every 12 to 18 months to releasing every six weeks. [63]. Rapid releases

enable the delivery of software in a shorter time and enables reacting rapidly

to customer feedback [39, 43]. However, there is little knowledge about the

impact of a faster release cycle on the quality of software. Thus, researchers

have explored the impact of rapid releases on quality [39, 40,43,62,63].

Khomh et al. [39,40] study the impact of changing from a traditional long

release cycle to a rapid release cycle in the Mozilla Firefox by comparing

the number of post-release bugs, median uptime, and crash rates. Khomh

et al. [39, 40] illustrate that the number of reported bugs per day in rapid

releases does not change significantly in comparison to traditional long releases,

while defects are fixed faster in rapid releases. Khomh et al. also find that

users discover bugs faster because the program crashes more quickly than in

traditional releases.

Mäntylä et al. [43] study the testing of rapid releases for the Mozilla Fire-

fox browser. The study collects di↵erent metrics that are related to the testing

activities; such as the count of tests that are executed per day, the count

of testers who are working in the project per day; they compare the testing

activities within traditional releases to the testing activities within rapid re-

leases. The study finds that with rapid releases developers test less compared

to traditional releases.

Souza et al. [62] study the impact of rapid releases on the software quality

by comparing the bug reopening rate in traditional and rapid releases. They

study traditional and rapid releases of Mozilla Firefox and find that rapid

releases have a 7% increase in the bug reopening rate than traditional releases.

Hemmati et al. [32] find that a risk-driven prioritization technique has a higher

accuracy in prioritizing the test cases in rapid releases than other prioritization

techniques.

All prior work on rapid releases is done on Mozilla Firefox, while we study

the mobile apps in the Google Play Store. Moreover, we look at another type

of release, which is very rapid by definition, i.e., emergency updates.

7.2 Bugs in mobile apps

In order to minimize the bugs in mobile apps, prior research studies crashes and

bugs in mobile apps. Guana at al. [25] analyze the bugs data for 20,169 bugs

38 Safwat Hassan et al.

in the Android platform repository. They study which layer in the Android

framework contains more reported bugs. They find that the framework layer

contains a higher number of bugs than the kernel layer. Han et al. [28] study the

Android platform bugs that are reported for the HTC and Motorola devices.

They manually labeled the bugs and applied Latent Dirichlet Allocation (LDA)

and Labeled LDA techniques in order to generate the topics from the bug

reports. Han et al. identify 57 labels and 72 labels for the Motorola and HTC

devices respectively. Han et al. find 14 common topics between the Motorola

and HTC devices.

Syer et al. [74] study the di↵erences between mobile apps, desktop/server

applications. Syer et al. study 15 open-source mobile apps (from the Google

Play Store and F-Droid apps repositories) and five desktop/server applications.

Syer et al. find that mobile apps have smaller code base than desktop/server

applications. Syer et al. find that the reported bugs are fixed faster in mobile

apps than in the desktop/server applications. Syer et al. [73] study the relation

between the use of Android APIs and the probability of having bug reports

in the mobile apps. Syer et al. find that source code files that have a higher

dependence on the Android APIs are more bug-prone than other files. Thus,

Syer et al. recommended to prioritize code review e↵orts on source code files

that heavily depend on the Android APIs.

Ravindranath et al. [54] propose an AppInsight tool that analyzes the mo-

bile app and identifies performance bottlenecks. Their study includes the anal-

ysis of the usage of 30 users of 30 apps over a four months period and leverages

the AppInsight tool to identify the performance bottlenecks in these studied

apps. Linares-Vásquez et al. [41] study the impact of the change to mobile OS

APIs and the fault-proneness of the used APIs on the app’s rating, Linares-

Vásquez et al. predict the app success based on the users rating and apply

their study on 7,097 free-to-download Android apps. Their study finds a high

correlation between the app’s rating and the change and fault-proneness of the

APIs that are used by the app, which means that the apps with high rating

are more likely to use the APIs with lower change and fault-proneness.

The limited battery power of mobile devices may impact the user experi-

ence if some app features have a high battery consumption (e.g., the mobile

camera) [76]. Researchers study energy bugs and energy hotspots in mobile

apps [12,51,52,76]. According to Banerjee et al. [12] the energy bug is defined

as the cases when the mobile device resources are still used although the app

is no longer active, while energy hotspots are defined as the cases when the

app causes high energy consumption although the resource utilization is small.

Pathak et al. [51] propose a taxonomy of smartphone energy bugs. Pathak et

al. find that there is a variation in the types and causes of energy bugs. Pathak

et al. provide a roadmap for developing a framework that identifies the root-

cause of energy bugs. Banerjee et al. [12] continue the study of energy bugs

and energy hotspots and develop a framework that generates test data in or-

der to detect energy bugs and energy hotspots in mobile apps. Wan et al. [76]

study the display energy hotspots in mobile apps. Their research identifies the

screens that have more energy consumption than the optimized screen design.

An Empirical Study of Emergency Updates for Top Android Mobile Apps 39

For example, the optimized colors may reduce energy consumption. Wan et al.

rank the app screens with respect to the di↵erence in the energy consumption

between the original screens and the energy-optimized screens, so developers

can focus on top energy consuming screens to reduce the consumed energy of

apps.

Hecht et al. [31] study anti-patterns in mobile apps. Hecht et al. analyze

the source code from 3,568 updates of 106 apps in the Google Play Store.

Hecht et al. identify seven anti-patterns in mobile apps. The anti-patterns

belong to two groups: object oriented anti-patterns and Android framework

anti-patterns. The findings from Hecht et al. show that mobile app developers

need to allocate more quality assurance e↵orts.

The di↵erence between our work and the prior work related to bugs in mo-

bile apps is that the our identified patterns are di↵erent from traditional bugs

in the source code. These issues are typically introduced by simple developer

mistakes.

7.3 Customer reviews of mobile apps

User reviews have been used as new source of data to capture the perceived

quality of an app. For example, McIlroy et al. [46, 47] collect the customer

reviews from over 10,000 of the top free-to-download apps across all the app

categories in the Google Play Store, and propose an approach to label user re-

views automatically using 14 di↵erent labels that capture the user’s perceived

quality of an app.

Guzman et al. [27] study customer reviews for mobile apps by extracting

the app features from the customer reviews. They apply sentiment analysis to

quantitative the reviews, and then group the extracted app features into high

level topics using LDA techniques. Guzman et al. study the customer reviews

for seven apps from both the Google Play Store and the Apple Store. Their

study proposes an approach for identifying the app features and general topics

from customer reviews. They evaluate the identified topics through a manual

analysis process and their approach has a 59% precision and a 51% recall.

Khalid et al. [37, 38] analyze the customer reviews in the Apple Store and

identify 12 types of user complaints. They study the devices that have the most

reported complaints in order to prioritize the quality assurance resources for

these devices.

Khalid et al. [36] apply FindBugs on 10,000 Android Apps and study the

relationship between the apps’ ratings and the warnings identified by the Find-

Bugs tool. They find that some FindBugs warnings (such as ‘Performance’,

‘Bad Practice’ and ‘Internationalization’) occur more significantly in the apps

with low rating.

Gui et al. [26] study the hidden cost in mobile apps by analyzing the

impact of using advertisement network on the performance, energy, network,

maintenance, and reviews of the mobile app. Gui et al. study 21 di↵erent

mobile apps of the Google Play Store, and they analyze the customer review

40 Safwat Hassan et al.

during the study period from January 2014 to August 2014. The result of the

study shows that more than 50% of the studied apps contain at least 3.28% of

one and two stars reviews that mention advertisement in the review text. The

study shows that the hidden cost of using advertisement networks can a↵ect

the apps rating.

Harman et al. [29] study the relationship between the app rating, the rank

for the number of users who downloaded the app, and the price of the app.

They collect data for 32,108 apps from the Blackberry App Store. Their study

shows that there is a strong correlation between the app rating and the app

downloads and there is no correlation between the app price and the app rating

or the app downloads.

Maalej et al. [42] proposed an automated approach to classify customer

reviews into four categories: bug, feature request, rating and user experience.

Maalej et al. leverage data that are extracted from reviews, such as reviews

rating, reviews length, sentiment analysis and bag of words, to classify the

reviews.

Prior work proposes automated analyses of the reviews without mapping

the reviews to particular updates. Instead, we manually investigate those re-

views that are associated with each studied emergency update (Ui) and the

preceding update (Ui�1).

8 Conclusions

Mobile app stores provide an update mechanism that enables app develop-

ers to rapidly publish new updates to their users in a cost e↵ective manner.

Developers leverage this mechanism to publish emergency updates that are

published soon after the previous update.

In this paper, we study emergency updates in the Google Play Store by

analyzing more than 44,000 updates based on around a year of monitoring the

update activities of over 10,000 of the top free-to-download apps in the store.

By analyzing the top 1,000 emergency updates, we find that:

1. The emergency updates are often updates with a long lifetime (i.e., they

are rarely followed by another emergency update). Users should update

their apps when there is an emergency update without being concerned

about another update showing up soon afterwards.

2. Emergency updates rarely include a description in their release notes about

the rationale for such an update.

3. The updates preceding the emergency updates receive a higher ratio of

negative reviews than the emergency updates.

We identify eight patterns of emergency updates in two categories, updates

due to deployment issues and updates due to source code changes. For each

pattern, we document the description, root-causes, example updates, examples

of user complaints, speed of repair, and the takeaway from this pattern for

users, developers, researchers and app store owners. Our findings can help

An Empirical Study of Emergency Updates for Top Android Mobile Apps 41

developers and app store owners avoid emergency updates in order to improve

the quality and user satisfaction of their apps.

Our study is a first step in creating a rich catalogue of patterns of emer-

gency updates. Future studies should explore additional emergency updates in

order to augment our identified patterns.

References

1. ABI Research: Android will account for 58% of smartphone app downloads in 2013, with
iOS commanding a market share of 75% in tablet apps. https://www.abiresearch.

com/press/android-will-account-for-58-of-smartphone-app-down/. (Last accessed
March 2016)

2. Akdeniz: Google play crawler. https://github.com/Akdeniz/google-play-crawler

(2013)
3. Alvarez, H.: A guide to color, ux, and conversion rates. http://www.usertesting.com/

blog/2014/12/02/color-ux-conversion-rates/. (Last accessed March 2016)
4. Android, G.: App manifest, android developers. http://developer.android.com/

guide/topics/manifest/manifest-intro.html. (Last accessed March 2016)
5. Android, G.: Permission, android developers. http://developer.android.com/guide/

topics/manifest/permission-element.html. (Last accessed March 2016)
6. Android, G.: Uses-feature, android developers. http://developer.android.com/guide/

topics/manifest/uses-feature-element.html. (Last accessed March 2016)
7. Android, G.: Uses-sdk, android developers. http://developer.android.com/guide/

topics/manifest/uses-sdk-element.html. (Last accessed March 2016)
8. Apktool: Apktool - a tool for reverse engineering android apk files. http://ibotpeaches.

github.io/Apktool/. (Last accessed March 2016)
9. AppBrain: Free versus paid android apps. http://www.appbrain.com/stats/

free-and-paid-android-applications. (Last accessed March 2016)
10. Arakelyan, A.: Which color is right for your mobile app icon. https://www.iconsmind.

com/color-right-mobile-app-icon/. (Last accessed March 2016)
11. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code review.

In: 35th International Conference on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013, pp. 712–721 (2013). URL http://dl.acm.org/citation.

cfm?id=2486882

12. Banerjee, A., Chong, L.K., Chattopadhyay, S., Roychoudhury, A.: Detecting energy bugs
and hotspots in mobile apps. In: Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pp. 588–598. ACM, New
York, NY, USA (2014)

13. Bavota, G., Vásquez, M.L., Bernal-Cárdenas, C.E., Penta, M.D., Oliveto, R., Poshy-
vanyk, D.: The impact of API change- and fault-proneness on the user ratings of android
apps. IEEE Trans. Software Eng. 41(4), 384–407 (2015)

14. CFR: Cfr - another java decompiler. http://www.benf.org/other/cfr/. (Last accessed
March 2016)

15. Colblindor: Coblis color blindness simulator. http://www.color-blindness.com/

coblis-color-blindness-simulator/. (Last accessed March 2016)
16. Developer, A.: iOS human interface guidelines: Color and typography. https:

//developer.apple.com/library/ios/documentation/UserExperience/Conceptual/

MobileHIG/ColorImagesText.html. (Last accessed March 2016)
17. Dex2jar: Dex2jar download - sourceforge.net. http://sourceforge.net/projects/

dex2jar/. (Last accessed March 2016)
18. Distimo: Google Play Store, United States, top overall, free, week 35 2013. http://www.

distimo.com/leaderboards/google-play-store/united-states/top-overall/free

(2013)
19. Dredge, S.: Information commissioner’s o�ce releases app privacy

guidelines. http://www.theguardian.com/technology/2013/dec/19/

42 Safwat Hassan et al.

information-commissioners-office-app-privacy-guidelines. (Last accessed
March 2016)

20. F-Droid: F-droid. http://f-droid.org/. (Last accessed March 2016)
21. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demysti-

fied. In: Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS ’11, pp. 627–638. ACM, New York, NY, USA (2011)

22. FindBugs: Findbugs™- find bugs in java programs. http://findbugs.sourceforge.net.
(Last accessed March 2016)

23. Gehan, E.A.: A generalized wilcoxon test for comparing arbitrarily singly-censored sam-
ples. Biometrika 52(1-2), 203–223 (1965)

24. Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app behavior against app descrip-
tions. In: Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pp. 1025–1035. ACM, New York, NY, USA (2014)

25. Guana, V., Rocha, F., Hindle, A., Stroulia, E.: Do the stars align? multidimensional
analysis of android’s layered architecture. In: 9th IEEE Working Conference of Mining
Software Repositories, MSR 2012, June 2-3, 2012, Zurich, Switzerland, pp. 124–127
(2012)

26. Gui, J., Mcilroy, S., Nagappan, M., Halfond, W.G.J.: Truth in advertising: The hidden
cost of mobile ads for software developers. In: 37th International Conference on Software
Engineering, ICSE ’15, Florence, Italy - May 16 - May 24, 2015 (2015)

27. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment anal-
ysis of app reviews. In: IEEE 22nd International Requirements Engineering Conference,
RE 2014, Karlskrona, Sweden, August 25-29, 2014, pp. 153–162 (2014)

28. Han, D., Zhang, C., Fan, X., Hindle, A., Wong, K., Stroulia, E.: Understanding android
fragmentation with topic analysis of vendor-specific bugs. In: 19th Working Conference
on Reverse Engineering, WCRE 2012, Kingston, ON, Canada, October 15-18, 2012, pp.
83–92 (2012)

29. Harman, M., Jia, Y., Zhang, Y.: App store mining and analysis: MSR for app stores.
In: 9th IEEE Working Conference of Mining Software Repositories, MSR 2012, June
2-3, 2012, Zurich, Switzerland, pp. 108–111 (2012)

30. Hassan, A.E., Holt, R.C.: Predicting change propagation in software systems. In: 20th
International Conference on Software Maintenance (ICSM 2004), 11-17 September 2004,
Chicago, IL, USA, pp. 284–293 (2004). DOI 10.1109/ICSM.2004.1357812. URL http:

//dx.doi.org/10.1109/ICSM.2004.1357812

31. Hecht, G., Omar, B., Rouvoy, R., Moha, N., Duchien, L.: Tracking the Software Quality
of Android Applications along their Evolution. In: L. Grunske, M. Whalen (eds.) 30th
IEEE/ACM International Conference on Automated Software Engineering, Proceedings
of the 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2015), p. 12. IEEE, Lincoln, Nebraska, United States (2015). URL https://hal.

inria.fr/hal-01178734

32. Hemmati, H., Fang, Z., Mantyla, M.V.: Prioritizing manual test cases in traditional
and rapid release environments. In: 8th IEEE International Conference on Software
Testing, Verification and Validation, ICST 2015, Graz, Austria, April 13-17, 2015, pp.
1–10 (2015)

33. Houston, P.: Store and use files in assets. https://xjaphx.wordpress.com/2011/10/02/
store-and-use-files-in-assets/. (Last accessed March 2016)

34. Hyzap: Hyzap. https://www.heyzap.com. (Last accessed March 2016)
35. Joorabchi, M.E., Mesbah, A., Kruchten, P.: Real challenges in mobile app development.

In: 2013 ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement, Baltimore, Maryland, USA, October 10-11, 2013, pp. 15–24 (2013)

36. Khalid, H., Nagappan, M., Hassan, A.E.: Examining the relationship between findbugs
warnings and end user ratings: A case study on 10,000 android apps. IEEE Software
(99) (2015)

37. Khalid, H., Nagappan, M., Shihab, E., Hassan, A.E.: Prioritizing the devices to test
your app on: A case study of android game apps. In: Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2014,
pp. 610–620. ACM, New York, NY, USA (2014)

Safwat Hassan

Safwat Hassan

An Empirical Study of Emergency Updates for Top Android Mobile Apps 43

38. Khalid, H., Shihab, E., Nagappan, M., Hassan, A.E.: What do mobile app users complain
about? IEEE Software 32(3), 70–77 (2015)

39. Khomh, F., Adams, B., Dhaliwal, T., Zou, Y.: Understanding the impact of rapid re-
leases on software quality - the case of firefox. Empirical Software Engineering 20(2),
336–373 (2015)

40. Khomh, F., Dhaliwal, T., Zou, Y., Adams, B.: Do faster releases improve software
quality?: An empirical case study of mozilla firefox. In: Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories, MSR ’12, pp. 179–188. IEEE
Press, Piscataway, NJ, USA (2012)

41. Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Di Penta, M., Oliveto, R., Poshy-
vanyk, D.: API change and fault proneness: A threat to the success of android apps.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pp. 477–487. ACM, New York, NY, USA (2013)

42. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? on automati-
cally classifying app reviews. In: 23rd IEEE International Requirements Engineering
Conference, RE 2015, Ottawa, ON, Canada, August 24-28, 2015, pp. 116–125 (2015).
DOI 10.1109/RE.2015.7320414. URL http://dx.doi.org/10.1109/RE.2015.7320414

43. Mäntylä, M.V., Adams, B., Khomh, F., Engström, E., Petersen, K.: On rapid releases
and software testing: a case study and a semi-systematic literature review. Empirical
Software Engineering pp. 1–42 (2014)

44. Mäntylä, M.V., Khomh, F., Adams, B., Engström, E., Petersen, K.: On rapid releases
and software testing. In: Proceedings of the 2013 IEEE International Conference on
Software Maintenance, ICSM ’13, pp. 20–29. IEEE Computer Society, Washington,
DC, USA (2013)

45. Martin, W., Harman, M., Jia, Y., Sarro, F., Zhang, Y.: The app sampling problem
for app store mining. In: 12th IEEE/ACM Working Conference on Mining Software
Repositories, MSR 2015, Florence, Italy, May 16-17, 2015, pp. 123–133 (2015). DOI
10.1109/MSR.2015.19. URL http://dx.doi.org/10.1109/MSR.2015.19

46. McIlroy, S.: Empirical studies of the distribution and feedback mechanisms of mobile
app stores. Master’s thesis, Queen’s University (2014)

47. McIlroy, S., Ali, N., Khalid, H., Hassan, A.E.: Analyzing and automatically labelling
the types of user issues that are raised in mobile app reviews. Empirical Software
Engineering (2015)

48. mobiThinking: Global mobile statistics 2013 section e: Mobile apps, app
stores, pricing and failure rates. http://mobiforge.com/research-analysis/

global-mobile-statistics-2013-section-e-mobile-apps-app-stores-pricing-and-failure-rates?

mT. (Last accessed March 2016)
49. Oracle, C.: Color oracle, design for the color impaired. http://colororacle.org. (Last

accessed March 2016)
50. Pandita, R., Xiao, X., Yang, W., Enck, W., Xie, T.: Whyper: Towards automating risk

assessment of mobile applications. In: Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13), pp. 527–542. USENIX, Washington, D.C. (2013)

51. Pathak, A., Hu, Y.C., Zhang, M.: Bootstrapping energy debugging on smartphones: a
first look at energy bugs in mobile devices. In: Tenth ACM Workshop on Hot Topics
in Networks (HotNets-X), HOTNETS ’11, Cambridge, MA, USA - November 14 - 15,
2011, p. 5 (2011)

52. Pathak, A., Jindal, A., Hu, Y.C., Midki↵, S.P.: What is keeping my phone awake?:
characterizing and detecting no-sleep energy bugs in smartphone apps. In: The 10th
International Conference on Mobile Systems, Applications, and Services, MobiSys’12,
Ambleside, United Kingdom - June 25 - 29, 2012, pp. 267–280 (2012)

53. Poschenrieder, M.: 77% will not download a Retail app
rated lower than 3 stars. http://blog.testmunk.com/

77-will-not-download-a-retail-app-rated-lower-than-3-stars/. (Last accessed
March 2016)

54. Ravindranath, L., Padhye, J., Agarwal, S., Mahajan, R., Obermiller, I., Shayandeh,
S.: Appinsight: Mobile app performance monitoring in the wild. In: 10th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2012, Hollywood,
CA, USA, October 8-10, 2012, pp. 107–120 (2012)

44 Safwat Hassan et al.

55. Robotium: Robotium. https://code.google.com/p/robotium/. (Last accessed March
2016)

56. Ruiz, I.J.M., Adams, B., Nagappan, M., Dienst, S., Berger, T., Hassan, A.E.: A large-
scale empirical study on software reuse in mobile apps. IEEE Software 31(2), 78–86
(2014). DOI 10.1109/MS.2013.142. URL http://doi.ieeecomputersociety.org/10.

1109/MS.2013.142

57. Ruiz, I.J.M., Nagappan, M., Adams, B., Hassan, A.E.: Understanding reuse in the
android market. In: IEEE 20th International Conference on Program Comprehension,
ICPC 2012, Passau, Germany, June 11-13, 2012, pp. 113–122 (2012). DOI 10.1109/
ICPC.2012.6240477. URL http://dx.doi.org/10.1109/ICPC.2012.6240477

58. SimonVT: What API level should I target? http://simonvt.net/2012/02/07/

what-api-level-should-i-target/. (Last accessed March 2016)
59. Smali2java: Smali2java. http://www.hensence.com/en/smali2java/. (Last accessed

March 2016)
60. Smith, J.: How to use the psychology of color to increase website conversions.

https://blog.kissmetrics.com/psychology-of-color-and-conversions/. (Last ac-
cessed March 2016)

61. Sofia: Chapter 2, structure of an android app. http://sofia.cs.vt.edu/sofia-2114/

book/chapter2.html. (Last accessed March 2016)
62. Souza, R., von Flach G. Chavez, C., Bittencourt, R.A.: Do rapid releases a↵ect bug

reopening? A case study of firefox. In: 2014 Brazilian Symposium on Software Engi-
neering, Maceió, Brazil, September 28 - October 3, 2014, pp. 31–40 (2014)

63. Souza, R., von Flach G. Chavez, C., Bittencourt, R.A.: Rapid releases and patch back-
outs: A software analytics approach. IEEE Software 32(2), 89–96 (2015)

64. Stackoverflow: Clean up unused android permissions, stackoverflow. http:

//stackoverflow.com/questions/18362305/clean-up-unused-android-permissions.
(Last accessed March 2016)

65. Stackoverflow: Di↵erence between /res and /assets directories. http://stackoverflow.
com/questions/5583608/difference-between-res-and-assets-directories. (Last
accessed March 2016)

66. Stackoverflow: How to check if android permission is actually being
used?, stackoverflow. http://stackoverflow.com/questions/24858462/

how-to-check-if-android-permission-is-actually-being-used. (Last accessed
March 2016)

67. Stackoverflow: Remove extra unwanted permissions from manifest an-
droid, stackoverflow. http://stackoverflow.com/questions/8257412/

remove-extra-unwanted-permissions-from-manifest-android. (Last accessed
March 2016)

68. Stackoverflow: Storage limit in raw and asset folder in android. http://stackoverflow.
com/questions/14995756/storage-limit-in-raw-and-asset-folder-in-android.
(Last accessed March 2016)

69. Statista: Google play: number of downloads 2010-2013. http://www.statista.com/

statistics/281106/number-of-android-app-downloads-from-google-play/. (Last
accessed March 2016)

70. Statista: Number of apps available in leading app stores as
of July 2015. http://www.statista.com/statistics/276623/

number-of-apps-available-in-leading-app-stores/. (Last accessed March 2016)
71. Studio, A.: Managing projects overview - android developers. https://developer.

android.com/tools/projects/index.html. (Last accessed March 2016)
72. Support, G.: Update your apps - developer console help. https://support.google.com/

googleplay/android-developer/answer/113476?hl=en. (Last accessed March 2016)
73. Syer, M.D., Nagappan, M., Adams, B., Hassan, A.E.: Studying the relationship between

source code quality and mobile platform dependence. Software Quality Journal 23(3),
485–508 (2015). DOI 10.1007/s11219-014-9238-2. URL http://dx.doi.org/10.1007/

s11219-014-9238-2

74. Syer, M.D., Nagappan, M., Hassan, A.E., Adams, B.: Revisiting prior empirical find-
ings for mobile apps: an empirical case study on the 15 most popular open-source
android apps. In: Center for Advanced Studies on Collaborative Research, CAS-

An Empirical Study of Emergency Updates for Top Android Mobile Apps 45

CON ’13, Toronto, ON, Canada, November 18-20, 2013, pp. 283–297 (2013). URL
http://dl.acm.org/citation.cfm?id=2555553

75. Telerik: Extra android permissions always set. http://www.telerik.com/forums/

extra-android-permissions-always-set. (Last accessed March 2016)
76. Wan, M., Jin, Y., Li, D., Halfond, W.G.J.: Detecting display energy hotspots in android

apps. In: 8th IEEE International Conference on Software Testing, Verification and
Validation, ICST 2015, Graz, Austria, April 13-17, 2015, pp. 1–10 (2015)

77. Wikipedia: Wikipedia, Patch Tuesday. http://en.wikipedia.org/wiki/Patch_

Tuesday. (Last accessed March 2016)
78. Xu, W., Zhang, F., Zhu, S.: Permlyzer: Analyzing permission usage in android appli-

cations. In: IEEE 24th International Symposium on Software Reliability Engineering,
ISSRE 2013, Pasadena, CA, USA, November 4-7, 2013, pp. 400–410 (2013). DOI
10.1109/ISSRE.2013.6698893. URL http://dx.doi.org/10.1109/ISSRE.2013.6698893

79. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide
software changes. In: 26th International Conference on Software Engineering (ICSE
2004), 23-28 May 2004, Edinburgh, United Kingdom, pp. 563–572 (2004). DOI 10.
1109/ICSE.2004.1317478. URL http://dx.doi.org/10.1109/ICSE.2004.1317478

