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Upon receiving a new issue report, practitioners start by investigating the defect type, the potential fixing effort
needed to resolve the defect and the change impact. Moreover, issue reports contain valuable information,
such as, the title, description and severity, and researchers leverage the topics of issue reports as a collective
metric portraying similar characteristics of a defect. Nonetheless, none of the existing studies leverage the
defect topic, i.e., a semantic cluster of defects of the same nature, such as Performance, GUI and Database, to
estimate the change impact that represents the amount of change needed in terms of code churn and the
number of files changed. To this end, in this paper, we conduct an empirical study on 298,548 issue reports
belonging to three large-scale open-source systems, i.e., Mozilla, Apache and Eclipse, to estimate the change
impact in terms of code churn or the number of files changed while leveraging the topics of issue reports.
First, we adopt the Embedded Topic Model (ETM), a state-of-the-art topic modelling algorithm, to identify
the topics. Second, we investigate the feasibility of predicting the change impact using the identified topics
and other information extracted from the issue reports by building eight prediction models that classify issue
reports requiring small or large change impact along two dimensions, i.e., the code churn size and the number
of files changed. Our results suggest that XGBoost is the best-performing algorithm for predicting the change
impact, with an AUC of 0.84, 0.76, and 0.73 for the code churn and 0.82, 0.71 and 0.73 for the number of files
changed metric for Mozilla, Apache, and Eclipse, respectively. Our results also demonstrate that the topics of
issue reports improve the recall of the prediction model by up to 45%.
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1 INTRODUCTION
Software systems have become an integral part of our daily activities. However, they are prone
to defects. In the realm of software engineering, defects consume a considerable amount of the
project budget; it is estimated that 113 billion dollars are budgeted yearly in the US to identify and
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fix software defects [2] and 312 billion dollars are budgeted yearly globally fixing defects [1]. To
ensure an efficient defect reporting process, issue reports are usually employed to describe software
failures. Upon receiving a new issue report, developers start by investigating the nature of the
software failure. In the literature, researchers support developers in fixing defects by automating
various defect-related processes including defect assignment [52], duplicate defect detection [98],
defect localization [59], change impact analysis [57], defect prioritization [5], and defect fixing time
prediction [112].
Estimating the human labour and the change impact, i.e., amount of change, needed to fix a

defect, plays a crucial factor in the efficiency of the defect assignment and prioritization [68, 135]
given that there are limited human resources, i.e., developers, available to work on a software
project [54]. In the defect fixing effort prediction research, the existing work leverages the status of
the issue reports and the textual information of an issue, such as the title and the description, to
predict the fixing effort in terms of fixing time [37, 124, 128] and code churn [104]. Similarly, change
impact analysis research [74, 126] predicts the amount of change needed to fix a defect in terms
of code churn and the number of files changed, leveraging the historical data of the application
source code and the textual information of issue reports.
Nevertheless, the predicted defect fixing time might not be accurate since the prediction relies

on the status of the issue reports, which might not be updated on time to reflect the real fixing
time [51, 127]. For example, developers might not start fixing the defect right after the corresponding
issue report was assigned to them. Moreover, the calculated predicted time represents the calendar
days or hours, not the working days or hours that reflect the real effort to fix a defect [9]. In
addition, predicting the fixing effort, using the summary and the description of the issue report
only, is unable to achieve a high accuracy of prediction, i.e., AUC of 0.61 [104]. Moreover, none of
the existing change impact techniques focusing on predicting the amount of change leverages the
common characteristics of the issue reports to quantize the size of the change into small and large
change impact categories without relying on the source code.
In this study, we assess the change impact that predicts the amount of fixing needed in terms

of (1) the code churn size and (2) the number of files changed. Issue reports contain valuable
information, such as the title, description and severity. In existing work, researchers leverage the
collective knowledge of issue reports by identifying shared topics among defects and use them in
defect assignments [79, 116, 117, 121]. In our work, we consider the collection of defects belonging
to the same topic, which can provide common characteristics of the defects and leverage the topics
of issue reports to estimate the change impact rather than relying on the content of individual
issue reports. By leveraging the topics of issue reports we could improve the accuracy of the
change impact prediction models. More specifically, we conduct our study in two steps. First, we
automatically assign a topic to each issue report leveraging the state-of-the-art topic modelling
technique, i.e., Embedded Topic Model (ETM) [31]. Second, we train eight predictive models capable
of distinguishing between defects requiring a small or large change impact while leveraging the
identified topics.
We conduct an empirical study on 298,548 issue reports belonging to three known ecosystems,

i.e., Mozilla, Apache, and Eclipse. We predict the change impact along two dimensions, i.e., the
code churn size and the number of files changed. In addition, we investigate the most influential
features affecting the prediction. We structure our study along by answering the following research
questions (RQs):
RQ1: Can we accurately assign topics to issue reports of software systems using ETM?

Developers spend time manually investigating an issue report to understand the nature of a
defect. Automatically identifying the topic of an issue report can save the developers’ effort
and time. In this RQ, we demonstrate that it is feasible to leverage ETM [31] to automatically
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assign topics to issue reports with a promising average accuracy of 79% over the three
ecosystems.

RQ2: Can we predict the change impact of resolving defects in terms of code churn size?
What are the most influential metrics for predicting the change impact in terms of
code churn?
Practitioners estimate the change impact of resolving a defect to prioritize the list of defects
efficiently. The change impact can be measured by calculating the lines of code changes. In
this RQ, we demonstrate that it is feasible to leverage the topics of issue reports to predict the
change impact in terms of code churn with a high accuracy achieving an AUC score up to
0.84. We find that the number of attachments, the number of issues blocked, and the number
of comments per developer are the most influential metrics for the change impact prediction.

RQ3: Can we predict the change impact of resolving defects in terms of the number of
files changed?
Certain defects propagate to several source code locations and require a fix in several files.
The number of modified files represents the change impact of resolving the defect. In this
RQ, we demonstrate that it is feasible to predict the change impact in terms of the number of
modified files with an AUC score up to 0.82.

The main contributions of our work are as follows:

(1) We adopt the topics of issue reports and various features extracted from issue reports to
improve the accuracy of the change impact (i.e., code churn size and the number of files)
prediction models.

(2) We evaluate the proposed predictive models on a large dataset of 298,548 issue reports of
three large-scale open-source systems.

(3) We identify the most important metrics related to the prediction of the change impact of
resolving defects.

Paper organization. The remaining part of the paper is organized as follows. Section 2 presents
the data collection and preprocessing processes. Section 3 provides a description of the ETM.
Section 4 illustrates the motivation, approach, and findings of our research questions. Section 5
discusses the implication of our work. Section 6 describes the potential threats of this study. Section 7
discusses the related work. Finally, Section 8 concludes the study and discusses future work.

2 DATASET
In this section, we present the dataset and the steps to collect and prepare the metrics from issue
reports and source code repositories. Figure 1 depicts the overview of our study.
Our study focuses on three large open-source software ecosystems, i.e., Mozilla, Apache, and

Eclipse. We specifically select issue reports belonging to these three ecosystems as they are widely
used in the realm of software engineering [48, 134], and they are rich in issue reports.

Mozilla and Apache. For Mozilla and Apache, we utilize the 20-MAD dataset provided by Claes
and Mäntylä [29] that encompasses 20 years of issue tracker and commit information existing
between 1998 to January 2020. The corresponding dataset includes meta-data information about
commits (e.g., hash and commit date), issues (e.g., summary, description, and status), and comments
(e.g., author and date created). In addition, several other comment-related metrics (e.g., emoticons,
sentistrength) processed with various NLP tools are included in the dataset. The data extracted
is stored in Parquet files format. First, we convert the data to CSV format and filter out metrics
unrelated to our study. As we aim to map the issue reports to their respective commits, we keep
only a subset of the reports that represent defects and filter out all the reports whose final resolution
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Fig. 1. Overview of our experiment.

is not “FIXED” and status not “CLOSED”. Since the commit information is needed to identify the
code churn, we exclude the issue reports that are not associated with any commit. Among the
metrics used in our study and listed in Section 2.2, the number of attachments, the number of CC
and the number of issues blocked do not exist in the 20-MAD dataset. Therefore, we parse issue
report data found on the bug tracking systems of Mozilla1 and Apache2 and collect the missing
metrics from the 20-MAD dataset.

Eclipse. For Eclipse, we download the issue reports belonging to five popular software projects
(e.g., Eclipse JDT and Eclipse Platform) from aweb-based issue tracker, called Bugzilla.3 The collected
data spans 20 years, from October 2001 until February 2021. Similar to Mozilla and Apache, we
only keep the reports representing defects, and that are “CLOSED” and “FIXED”. Next, as shown
at the bottom of Figure 1, we download the GitHub Repositories of the projects and extract their
corresponding commit logs. Next, we download the source code repositories of the projects and
their corresponding commit logs. For all the downloaded issue reports, we extract the issue ids
and map the id value of each report to the commits, using the numerical id value in the commit
log message. To realize the mapping, we adopt a heuristic that matches patterns in the commit
messages that include the issue report number using regular expressions [34]. For example, we
look for patterns such as "Bug #1346" or "Fix for #6742". Then, we use GitPython library 4 to interact
with the git repositories and extract the commit information, i.e., number of modified files, number
of lines of code added and removed, and commit timestamp of the associated commit. Table 1
summarizes the statistics of the collected issue reports of the three ecosystems.

2.1 Issue report labels inconsistency
Issue tracking systems, such as, Bugzilla and Jira, have a field known as keyword and label,
respectively, dedicated to tagging issue reports with a meaningful keyword, including the issue
report topic. While this field could be helpful to practitioners to better understand the defect, we
find that only 13% out of 298,548 issue reports in our study contain at least one keyword. We
manually investigate a statistical random sample (i.e., 288 reports in total, 96 from each ecosystem)
from the 13% issue reports that have keywords. We notice that: keywords represent various

1https://bugzilla.mozilla.org/home
2https://issues.apache.org/jira/
3https://bugs.eclipse.org/bugs/
4https://github.com/gitpython-developers/GitPython

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2022.



Predicting the Change Impact of Resolving Defects by Leveraging the Topics of Issue Reports in Open Source Software
Systems 5

Table 1. Dataset Statistics.

Ecosystem Issue reports

Mozilla 164,190
Apache 115,571
Eclipse 18,787

Total 298,548

dimensions that do not represent the defect type. For instance, for Eclipse issue reports, 64% of the
keywords are irrelevant to the topics of issue reports and include keywords, such as “contributed”,
“noteworthy”, “helpwanted”, “greatfix”, “bugday”. For Apache, 90% are irrelevant: "pull-request-
available", "windows", "easyfix", "ready-to-commit", "iOS”. ForMozilla, 84% are irrelevant: “fixed1.9.1”,
“regression”, “verified1.9.2”, “reproducible”.

2.2 Metrics collection
As shown in Figure 1, after we associate the issue reports to their commits, we compute the metrics.
In total, we collect 11 metrics, i.e., the code churn size from the associated commit and another
10 metrics from the issue reports. The 10 metrics from the issue reports constitute textual factors
(e.g., the title of issue reports) and characteristic factors (e.g., the number of comments per developer).

Issue report textual metrics
• The length of the issue report title: is the count of words encompassed in the title field of the
issue report. A longer title might represent a more complex defect that might have a larger
change impact.

• The length of the issue report description: is the count of words encompassed in the description
field of the issue report. Zhang et al. [127] explain that the length of the issue report might
indicate the complexity of understanding the issue report. In addition, Huang et al. [48] explain
that a more extended description of the issue report provides more elaborate information
about the issue. Therefore, we assume that a complex defect that has a large change impact
is more likely to have a lengthy issue report description.

• The number of comments per developer: is the ratio of the count of comments posted prior to
fixing the defect and the count of developers involved in posting the comments on an issue re-
port. Comments are an indication of increased communication [35]. Increased communication
might indicate that the defect is complex and hence have a larger change impact [108].

Issue report characteristics metrics
• The number of CC: is the count of distinct developers added to the list of carbon copy (CC).
A developer added to the list of CC is a developer interested in the progress of the defect.
A large number of CC might indicate that the defect is a bottleneck in the maintenance
process [107] which can consequently suggest that the defect might have a larger change
impact.

• The number of issues blocked: is the count of issue reports that can be fixed only after the
issue report in question is resolved. The larger the number of issue reports blocked by an
issue, the more likely it is that the issue has more change impact [107].

• The number of votes: is the count of users who would like the issue report resolved. Developers
vote for an issue report if they favour fixing the defect and consider it an important issue [110].
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Also, the number of votes unveils the effort invested in discussing an issue [35]. Since the
number of votes can be perceived as an indication of the importance of the issue [67], an issue
of high importance might affect a larger scale of the software product, i.e., several modules,
and hence have a higher change impact [6]. Therefore, we assume that an issue report with a
larger number of votes might have a larger change impact.

• The number of attachments: is the count of attachments added to the issue reports. Attachments
can include testing cases, stack traces and screenshots. A larger number of attachments might
be an indicator that the report may have a large change impact [15].

• Has version: is a boolean variable that describes whether the issue report has a version (i.e.,
the version of the software). The tracking information is likely to affect the change impact.
Related work [82] demonstrates that the version metric can influence the defect fixing time.

• Has milestone: is a boolean variable that describes whether the issue report has a milestone tar-
get (i.e., target to fix). Similarly to has version, a report with more tracking-related information
might affect the change impact.

• Is severe: is a boolean variable that describes whether the issue report is considered severe
or not. We consider the defect severe (i.e., value 1 is assigned) if the severity level specified
in the issue report is blocker, critical, major, urgent. A more severe defect might have more
change impact [76].

Code churn. A code churn is the number of modified lines of code which is the sum of the lines
of code added and removed [60, 66, 78]. Every issue report is associated with one or more commits.
Thus, for every report, we extract the number of lines of code modified (i.e., added or removed),
which is the sum of the changed lines as the code churn.

The number of changed files. The number of changed files represents the spread of the
propagation of the code change [88, 127] in the file level. We calculate the total number of files
changed for every issue report as the sum of the added, deleted, and modified files. If an issue report
is associated with several commits, the total number of changed files equals the sum of the number
of files changed in all the commits.

2.3 Data preprocessing
As depicted in Figure 1, we apply the same preprocessing steps to Mozilla, Apache and Eclipse
issue reports resulting in cleaned issue reports.

Removing the noise. A manual investigation of the issue reports shows that the descrip-
tion field of an issue report could contain noise. For example, it is common for developers to
include code fragments and log traces in the description. Therefore, we use regular expres-
sions to identify the lines that contain noise. We exclude the code fragments by identifying the
lines embedded in the Code or noformat tags by using the regular expression (Code:).*(Code)
and (noformat):.*(noformat). For the log traces, some lines start with timestamps of the
forms hh:mm:ss and hhmmss. Hence, we identify the log lines using two regular expressions
^\d{2}[:]+\d{2}[:]+\d{2}.* and ^\d{2}+\d{2}+\d{2}.* and remove them from the descrip-
tions of the issue reports. Some other log traces start with the expression Caused by. Therefore, we
use another regular expression (^Caused by) to exclude them. In addition, we remove the hyper-
links and the automatically generated code related to automated tests using the following respective
regular expressions (https|http).*?[\t\s\n] and ^(TEST-INFO|TEST-START|Build ID:|User Agent:).
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Normalizing the text. We apply the following text normalization steps on the title and descrip-
tion of an issue report. We remove English non-description stop words (e.g., “the”, “was” and “of”)
using the nltk package [16] that contains a defined corpus of English stop words. We also apply
text tokenization to exclude punctuation and special symbols. Lastly, we bring the words to their
ground forms by converting them to their stemmed and lemmatized versions. This step is essential
for Topic Modeling as it maps the words “connections”, “connecting” and “connected” to their basic
form “connect” [69] which reduces the vocabulary size.

3 BACKGROUND
In this section, we discuss about ETM, a state-of-the-art topic modelling technique that we adopt
to taxonomize the collected issue reports.
In 2003, Bengio et al. [12] introduce the concept of word embeddings, a distributed learned

representation for the text that represents words with similar meanings in close proximity in a
vector space. Word embedding plays a vital role in the realm of natural language processing. In
particular, ETM adopts the continuous bag-of-words (CBOW) [72] word embeddings. Given a
corpus of documents 𝐷 with 𝑉 unique words, let represent the 𝑛𝑡ℎ word in the 𝑑𝑡ℎ document. The
CBOW likelihood of the word𝑤𝑑𝑛 is:

𝑤𝑑𝑛 ∼ 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜌𝑇𝛼𝑑𝑛)
where 𝛼𝑑𝑛 represents the transpose of the embedding matrix that contains the embedding repre-
sentations of the vocabulary. 𝛼𝑑𝑛 represents the context embedding which is the sum of the vectors
of the words surrounding𝑤𝑑𝑛 .
In 2003, Latent Dirichlet Allocation (LDA) [17], a statistical model that generates topics, is

developed. LDA considers that each topic is characterized by a full distribution over the vocabulary
of a corpus. Each document is represented by a unique mixture of topics. However, despite its
popularity, LDA suffers in learning interpretable topics when the vocabulary size becomes immense.
To overcome the limitation mentioned above for large vocabulary and obtain good quality of topics,
practitioners should omit words to reduce the vocabulary size. However, pruning the vocabulary
could also threaten the quality of a model. To mitigate the limitations of LDA, Dieng et al. [31]
propose ETM. ETM has been shown to outperform LDA by being robust to even large vocabularies.
ETM is a technique that combines properties from both topic modelling and word embedding.

First, it relies on the topic model to identify interpretable latent semantics of the corpus. Second, it
leverages word embedding to efficiently represent the meaning of the words in the vector space.
Similar to LDA, ETM is a generative probabilistic model that represents each document as a
probability of topics. Compared to LDA, ETM represents not only the words using embedding
vectors but also the topics. For instance, in LDA, the 𝑘𝑡ℎ topic is a distribution over all the words
in a vocabulary. In contrast, ETM represents the 𝑘𝑡ℎ topic as an embedding vector, i.e., 𝛼𝑘 , in the
embedding space. Also, ETM presents an improvement over LDA in the process of reconstructing
the words from an assigned topic. It relies on the topic embedding and the embeddings of the
vocabulary to assign words to each topic using the CBOW likelihood. However, in ETM, the context
embedding is selected from the document context instead of the surrounding words as in standard
CBOW.
There are two parameters in ETM: the word embedding 𝜌 and the topic embeddings 𝛼 . In the

fitting process, ETM is trained to maximize the marginal likelihood of the documents as follows:

L(𝛼, 𝜌) =
𝐷∑︁
𝑑=1

log𝑝 (𝑤𝑑 |𝛼, 𝜌)
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where for a given corpus of documents {𝑤1,...,𝑤𝐷 },𝑤𝑑 is a collection of 𝑁𝑑 words. Thus, the word
embedding and the topics are found concurrently by ETM. However, the word embeddings can be
prefitted. In that case, the topics can be identified in a specific embedding space.
Similar to LDA, ETM represents each document as a probability of topics, and each topic is a

distribution over words. ETM will assign each document one topic.

4 RESEARCH QUESTIONS
In this section, we evaluate the feasibility of clustering issue reports into topics and the viability
of leveraging the topics of issue reports in predicting the change impact. Precisely, we discuss
motivation, approach and findings for our research questions.

4.1 RQ1: Can we accurately assign topics to issue reports of software systems using
ETM?

4.1.1 Motivation. In practice, developers manually investigate the issue reports to complete devel-
opment activities such as defect assignment and prioritization [8, 87, 119]. Issue reports contain
rich information that can help developers understand the nature of the defects and therefore
save development effort and time. Lili et al. [64] demonstrate that defects of the same categories
tend to have the same trend of fine-grained change operations, e.g., if statement, while statement,
assignment statement and function call statement, and the same frequency of fine-grained change
operation use. The collective knowledge in issue reports, i.e., topics, can guide developers in the
defect fixing activities and in predicting the change impact of fixing a defect. As depicted in Section
2.1, most issue reports do not contain keywords representing the topics of issue reports. Therefore,
in this RQ, we leverage the state-of-the-art topic model, ETM, to automatically discover the hidden
common topics across the issue reports. Having a high accuracy in identifying the topics provides
valuable data to the predictor models to estimate the change impact. We also study the relationship
between the identified topics and their severity.

4.1.2 Approach. Since the effectiveness of our proposed issue report classification approach relies
on the accuracy of the adopted embedding-based topic model, we additionally conduct a quantitative
evaluation of the effectiveness of ETM in extracting topics associated with every issue report in
our dataset. We use ETM implementation5 provided by its authors. Our approach consists of three
steps.
Step 1: Non-textual data processing. To obtain optimal results, we use ETM authors’ script6

to filter out words with a maximum document frequency above 70% and remove low-frequency
words appearing in only a few documents, referred to as the minimum document frequency. Setting
a minimum document frequency to remove the low-frequency words helps eliminate the rare words
that are not important to the topic model. It also reduces vocabulary size [31] and leads to better
computing time. After varying the value for the minimum document frequency by increasing
starting and 1, we set it to 15 as for the values higher than 15, only a small amount of improvement
in the vocabulary pruning and the computing time can be achieved. Hence, we exclude the words
that appear in less than 15 documents from the vocabulary. Then, we exclude the reports that have
a combined length for description and summary of fewer than three words as previous studies find
that short textual information rarely conveys meaningful information [11, 22, 62].

Step 2: Topic modeling hyperparameter tuning. Selecting the optimal number of topics plays
a pivotal role in the quality of the topic modelling results. We rely on the topic coherence (i.e., the
interpretability of a topic [73]) and topic diversity (i.e., unique words in the top 25 words of all
5https://github.com/adjidieng/ETM
6https://github.com/adjidieng/ETM/tree/master/scripts
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topics as defined by the ETM authors) to quantitatively measure the quality of the model in respect
to the selected topic number. Additionally, we rely on the human judgement that aligns with the
quantitative metrics [100]. We run the model with different numbers of topics by increasing and
decreasing the value of the topic number and finally set it to 15 as it provides the best quality of
topics. We also set the number of epochs to 300.

Step 3: Classification accuracy.After applying ETM on the issue reports of all three ecosystems,
we obtain 15 clusters of keywords, each representing an issue report topic. The first and third
authors followed an open coding approach [90, 92] to manually and independently assign labels to
the clusters generated by ETM. To evaluate if ETM can accurately assign topics to issue reports,
we select for each ecosystem a statistically representative random sample of issue reports with
a confidence level of 95% and a confidence interval of 10%. In total, we select 288 issue reports
that belong to Mozilla, Apache and Eclipse. We perform the below three steps to evaluate the
performance of the approach:
(1) The first and the third authors independently assign one topic from the 15 topics obtained by

ETM to each of the 288 sample reports.
(2) The Cohen’s kappa agreement score [70] is calculated on the annotated testing issue reports

using the "irr" package7 provided in R8. We achieve a score of 0.78, which indicates a substan-
tial level of agreement. Next, the annotators resolve the disagreements after discussing the
conflicts case by case. Finally, all the issue reports were assigned to one issue report topic.

(3) We calculate the final accuracy as the percentage of true positive (TP), where a TP represents
a topic assigned correctly by ETM that matches the topic assigned by an annotator.

The three ecosystems adopt different severity level schemas, e.g., Apache adopts an 8-level
severity schema, whereas Eclipse adopts a 5-level schema. Therefore, to conduct the severity
analysis across the different topics, we map the various severity levels of the three ecosystems to a
three-level severity schema, i.e., low, medium and high, introduced by Thung et al. [105]. Table 2
exhibits the three-level severity schema mapping. Then we conduct the following statistical tests.
(1) To check if the severity is significantly different among the topics of issue reports, we conduct

a comparison using the Kruskal-Wallis test [58], a non-parametric statistical test used to
compare more than two samples of data. If we obtain a p-value <= 0.05, we reject the null
hypothesis and conclude that not all the topics of issue reports have the same median severity.

(2) If the null hypothesis is rejected, we investigate if the differences among the topics are
of strong significance by calculating the epsilon squared effect size [123]. The effect size
represents the relationship of the variables, such as the topic of issue reports and severity, on
a numeric scale. A value close to zero indicates a negligible effect, whereas a value close to 1
indicates a very strong effect. We refer to Table 3 to identify the effect size.

(3) To further differentiate the topics of issue reports with different severity levels without
ambiguity, we conduct the Scott-Knott Effect Size Difference (SK-ESD) [102, 103]. The SK-
ESD uses hierarchical clustering to compare the means in the dataset to form statistically
distinct groups. The SK-ESD clusters the topics of issue reports in a way where the intra-group
difference in severity level is negligible and the inter-group difference is non-negligible.

4.1.3 Results. Our approach identifies 15 topics of issue reports commonly existing in
the three ecosystems but with different distributions. Table 4 provides a closer look at the
topics obtained by ETM along with the top 10 keywords. We observe that some of the topics are
considered common topics equally present in the three ecosystems. A few topics are system specific

7https://cran.r-project.org/web/packages/irr/index.html
8https://www.r-project.org/
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Table 2. Three-level severity schema mapping.

Severity level Mapping

trivial, minor, low, and normal Low
major Medium

blocker, critical, and urgent High

Table 3. Epsilon square effect size interpretation reference.

Epsilon squared Effect size

0.00 < 0.01 Negligible
0.01 < 0.04 Weak
0.04 < 0.16 Moderate
0.16 < 0.36 Relatively strong
0.36 < 0.64 Strong
0.64 < 1.00 Very Strong

Table 4. Inferred fifteen issue report topics with their representative keywords and an example of issue report

Topic Keywords Sample report title

Platform compatibility ’app’, ’devic’, ’sync’, ’web’, ’android’ Remove usage of nsIDOMWindowUtils.goOnline()
in mobile’s netError.xhtml

Testing ’test’, ’fail’, ’run’, ’unit’, ’expect’ Update .hgignore to ignore Loop unit test files

User experience ’open’, ’page’, ’step’, ’tab’, ’window’ Dialog opens up off the screen

File management ’file’, ’packag’, ’depend’, ’instal’, ’path’ Export bundle should create the description file

Build and deployment ’build’, ’warn’, ’compil’, ’make’, ’consol’ javaCompiler*.args generated just once per session

API related issues ’instanc’, ’class’, ’method’, ’interfac’, ’context’ SWIG interface doesn’t support CASException
thrown from some common APIs

Security ’user’, ’password’, ’client’, ’group’, ’permiss’ Password reset issues tokens w/ "&" in them,
URL not escaped

Release and Update ’updat’, ’version’, ’releas’, ’patch’, ’branch’ Add license header to RELEASE_NOTES

Performance ’cach’, ’memori’, ’size’, ’buffer’, ’alloc’ Portable spark: thread/memory leak in local mode

Database ’tabl’, ’data’, ’queri’, ’schema’, ’record’ Delete table does not remove the table directory
in the FS

Parallel event processing ’event’, ’frame’, ’process’, ’thread’, ’call’ Convert formSubmitListener.js to a process script
instead of a frame script

General program related anomaly ’use’, ’implement’, ’code’, ’want’, ’work’ Implement automatic bookmarks backup for 1.1

GUI ’background’, ’imag’, ’font’, ’style’, ’display’ Scrollbar handle is not colored correctly when selected
and dragged in gtk3

Server issues ’thread’, ’run’, ’connect’, ’session’, ’node’ Secondary socket of "tee" socket is not threadsafe

Interprocess communication (IPC) ’url’, ’request’, ’input’, ’header’, ’pars’, Olingo2’s batch process generates the invalid request

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2022.



Predicting the Change Impact of Resolving Defects by Leveraging the Topics of Issue Reports in Open Source Software
Systems 11

Table 5. The extracted topics of issue reports percentages distribution across the three ecosystems

Topics Apache(%) Mozilla(%) Eclipse(%)

Platform compatibility 1 11 1
Testing 6 7 3
User experience 3 14 20
File management 12 2 21
Build and deployment 3 10 5
API related issues 12 2 14
Security 13 2 1
Release and Update 4 8 9
Performance 2 10 1
Database 15 2 2
Parallel event processing (PEP) 1 8 1
General program anomaly (GPA) 2 6 5
GUI 2 12 10
Server issues 16 2 3
Interprocess communication (IPC) 8 4 4

Table 6. Accuracy of ETM calculated on 288 manual labelled issue reports.

Ecosystem Manually labelled issue reports Accuracy

Mozilla 96 76%
Apache 96 77%
Eclipse 96 83%

Average 288 79%

and are widely present in a specific ecosystem compared to the others. For example, as we can
see in Table 5, GUI and User experience are predominantly present in Mozilla and Eclipse and
represent combined more than 30% of the topics of issue reports as opposed to 4% for Apache. This
is intuitive since the browser and IDE domains heavily rely on user interaction and navigation
through a graphical interface. On the other hand, Server issues, Security and Database exceed 50%
of the topics of issue reports in Apache which is common for web servers. Performance for instance
is uniquely dominant for Mozilla, which can be explained by the importance of performance for
web accessibility. Also, we observe that Platform compatibility, Testing, Interprocess communication,
and Release and update have similar distribution across the three ecosystems. In fact, these topics
are expected to be present in almost any kind of software.

Our approach achieves an accuracy of 83%, 72% and 77% for Eclipse, Mozilla and Apache.
As shown in Table 6, our approach achieves high accuracy across the three ecosystems with an
average of 79%.

Defects of the different topics have different median severity levels for the three ecosys-
tems. Table 7 shows that the Kruskal-Wallis test’s p-value <= 0.05 for Mozilla, Apache and Eclipse.
Moreover, we observe that for Mozilla, the Epsilon squared effect size is moderate and weak for
Apache and Eclipse. Table 8 shows the different severity groups obtained by the Scott-Knott test.
We notice that GUI and IPC constantly belong to the groups representing the low severity across
the three ecosystems. Figures 2, 3 and 4 show the distribution of severity levels across the different
topics of issue reports for Mozilla, Apache and Eclipse, respectively.
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Fig. 2. The distribution of severity levels for Mozilla issue reports.

By observing these figures, we come up with two findings:

(1) We notice that different topics of issue reports have different severity levels within the same
ecosystem. In Mozilla and Eclipse, for example, the number of defects with high severity
belonging to the Parallel event topic is at least double the number of high-severity defects in
other topics. For Apache, more than 20% of the Security and Server defects are highly severe,
whereas less than 10% are severe for API and GUI topics.

(2) The same topics of issue reports have different severity levels distribution across the studied
ecosystems. When considering Apache, we notice that Security and Server topics have the
highest proportion of highly severe defects. This could be explained by the fact that Apache
applications fall under the web server domain, in which reliability is crucial. As for Eclipse
and Mozilla being IDE and client/browser applications respectively, Parallel event defects
that represent processes and threads are more severe than others.

Table 7. Kruskal-Wallis p-value and Epsilon squared effect size

Ecosystem p-value Epsilon squared Effect size

Mozilla 0.000000e+00 0.088 Moderate
Apache 0.000000e+00 0.024 Weak
Eclipse 3.004759e-41 0.012 Weak
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Fig. 3. The distribution of severity levels for Apache issue reports.

Fig. 4. The distribution of severity levels for Eclipse issue reports.

Summary of RQ 1

ETM achieves a promising average accuracy of 79% on 288 manual annotated reviews. The
extracted topics of issue reports can support the developers in better understanding the
nature of the defect.
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Table 8. The severity group raking obtained by SK-ESD.

Mozilla Apache Eclipse
Group Topic Group Topic Group Topic
G1 Parallel event G1 Security G1 Parallel event
G2 Performance G2 Server Server

API related G3 Testing G2 User experience
G3 User experience Parallel event File management
G4 Database Performance Build and deployment

Security Database G3 Platform compatibility
Build and deployment G4 User experience Database
Server GPR GUI

G5 GUI File management Security
IPC G5 Platform compatibility GPR
Release and update Build and deployment API related
File management API related Performance
Platform compatibility Release and update Testing
Testing G6 IPC IPC
GPR GUI Release and update

4.2 RQ2: Can we predict the change impact of resolving defects in terms of code churn
size? What are the most influential metrics for predicting the change impact in
terms of code churn?

4.2.1 Motivation. Given the time constraints and limited resources, during defects assignment,
practitioners, e.g., developers and project managers, estimate the defect fixing effort before assigning
the defect to a developer. When prioritizing defects, practitioners take into consideration the effort
level required to fix the defect [54]. The developer effort can be measured by the size of the required
change, i.e., lines of code modified that is the code churn [18]. In this RQ, we want to predict the
change impact of defects in terms of code churn size. We do not only use information extracted
from issue reports but also the topics of issue reports extracted in RQ1. In addition, we identify
the most influential metrics for predicting the change impact. This knowledge can help developers
better understand the prediction results and guide them on which metric they should focus on to
estimate the change impact.

4.2.2 Approach. Our goal is to predict the amount of change needed to fix the defect in terms of
code churn using only the issue report information. Thus, we formulate the dependent variable of
our prediction model (a.k.a., the prediction output Y) to be a boolean variable representing whether
the issue report requires a large or a small change impact. If the report is classified to require a
large change impact the prediction output Y = 1.
Dependent variable. In this RQ, we define the dependent variable as the change impact of

fixing a defect measured in terms of code churn size (i.e., small and large). We apply two different
steps to achieve the report classification to change impact. First, we apply the log transformation
to the numerical code churn value collected from the commit to correct the skewness in the data.
Second, we sort the issue reports by the increasing order of its code churn size and select the lower
10% as issue reports requiring small change impact and the upper 10% as the ones requiring a large
change impact. To obtain the dependent variable, we assign the value of 1 for the reports with large
change impact and 0 otherwise.

Independent variables. In total, we have 25 independent variables. While 10 of these metrics are
directly extracted from issue reports as explained in Section 2.2, we synthesize another 15 metrics
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Fig. 5. The hierarchical clustering of independent variables for Apache. The dotted red line represents the
threshold value of 0.7.

that represent the topics of issue reports. In RQ1, we extracted 15 different topics. To leverage these
extracted topics, we created 15 different boolean independent variables: Is platform, Is testing, Is user
experience, Is file management, Is build & deployment, Is API, Is Security, Is Release, Is Performance, Is
Database, Is Parallel event, Is GPR, Is GUI, Is Server, Is IPC. Each of the aforementioned variables
represents an issue report topic for the collected report. As explained in Section 4.1, each report
belongs to only one of the 15 topics. Therefore, for every report, only one of the 15 independent
variables has the value 1 and the others is assigned 0.

Correlation and redundancy analysis. The presence of correlated metrics might affect the
performance of the model [53]. Therefore, we apply varclus9 function in R to detect the existence of
highly correlated metrics in our dataset.We consider any pair of metrics that achieves a coefficient of
0.7 [71] and higher as highly correlated. Figure 5 illustrates the Spearman correlation of the metrics
of Apache projects. We only present the correlation of one ecosystem due to space limitations.
Mozilla and Eclipse correlation analyses give similar results, i.e., the absence of highly correlated
features; therefore, we keep all the metrics and exclude none.

Prediction models. We train eight different machine learning models to automatically classify
the issue reports based on the small and large change impact they require. We use the following
models that are widely utilized in the binary prediction and in the realm of Software Engineer-
ing [35, 48, 120]: Logistic regression, Naive Bayes, SVM, Random Forest, XGboost, Catboost, LGBM
and Multi-layer Perceptron. All the ML models are implemented using the scikit-learn10 library
in Python. We adopt the 10-fold cross-validation approach to validate the models and ensure
reliable performance. To configure the machine learning models, we use two automated parameter
optimization techniques Random Search and Grid Search. Grid Search is a brute-force approach
that finds the best hyperparameters for the machine learning model [13]. However, computing all
possible combinations of parameters is time-consuming. Therefore, to tune our machine learning
models efficiently, we first use RandomSearch, which is capable of testing a random wide range
of parameters very fast. After obtaining the best values for every parameter through Random
search, we adopt Grid search on a smaller search space of parameters. Grid Search identifies the
best combination of the parameters after applying the cross-validation score. To achieve the best
9https://search.r-project.org/CRAN/refmans/Hmisc/html/varclus.html
10https://scikit-learn.org/
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performance for our models, we adopt the RandomizedSearchCV and the GridSearchCV from
sk-learn to tune the hyperparameters of models.

To provide a robust model evaluation and to imitate the real-life settings, we adopt a time-based
train and test data splitting. Instead of randomly splitting the data into 80% training and 20% testing,
we sort the issue report by their creation date, select the most recent 20% of reports as testing, and
leave the rest for training. The Grid Search is performed on the training set with cross-validation.
Once the optimal hyperparameters are obtained, we evaluate the model on the test set. We use the
25 metrics described above as dependent variables for all the models.

Evaluation metrics. To quantify the performance of the predictive models, we consider preci-
sion, recall, and 𝐹1-Score (i.e., the harmonic combination of precision and recall) as the evaluation
metrics. Equations 1, 2, and 3 show the computation for precision, recall, and 𝐹1-Score.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

𝐹1-𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3)

We also use Area Under the Receiver Operating Characteristic Curve (AUC) [65] to evaluate the
effectiveness of our machine learning models. The AUC values range from 0 to 1. The performance
of a prediction model is considered promising if the AUC-ROC is 0.7 and above [38, 80] and 1
denotes a perfect predictive power.

Sensitivity Analysis. Our prediction approach has one hyper-parameter, the small-large code
churn change impact threshold. In this section, we select the prediction model that can achieve the
best performance to conduct the sensitivity analysis. Then, we experiment with three additional
thresholds, i.e., 25%, 40%, and 50%. The lower 25% reports are considered as defects with small
change impact and the upper 25% as large. A similar classification applies to the 40%, and 50%
thresholds.

Feature importance. To find the most influential metrics, first, we investigate if the 15 metrics,
i.e.,, topics of issue reports, synthesized from the results obtained in RQ1 improve the prediction
model. We construct a baseline model derived from the best performing model and best small-large
code churn threshold that considers only 10 metrics, i.e., 3 issue report textual metrics, 7 issue
reports characteristic metrics. We exclude the 15 issue report topics metrics. We also conduct a
complementary study that seeks to identify the most influential metrics among the 25 metrics for
identifying the change impact. Second, since every ecosystem is made of several software projects,
e.g., HIVE, Firefox and JDT are three popular software projects belonging to Apache, Mozilla and
Eclipse respectively, we create individual prediction models per software project. To avoid working
on toy software projects, we randomly select 4 software projects from each ecosystem having at
least 2,000 issue reports [95].
We employ the permutation feature importance11 from sk-learn to detect the influence, a.k.a.

importance, of every metric in our model. In the permutation feature technique, the metric im-
portance (i.e., feature importance) is calculated by considering the drop in the model performance
score when the values of the metric in question are randomly shuffled [86]. Shuffling the values of
the metric leads to breakage between the metric and the dependent variable and therefore indicates
11https://scikit-learn.org/stable/modules/permutation_importance.html
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to what extent the model depends on this metric. As done in previous work [48], to attain a reliable
result, we apply the permutation test on all 25 metrics repeatedly 10 times. To statistically identify
the magnitude of the difference between the importance score of the metrics, we compute the
SK-ESD test. The SK-ESD clusters the 25 metrics into groups, i.e., ranks, based on their importance
score.

4.2.3 Results. It is feasible to predict the issue reports requiring large change impact in
terms of code churn based on the information of the issue reports and the topics of issue
reports. Table 9 shows the performance in terms of precision, recall, F1-Score, and AUC of the
eight constructed prediction models. As we can notice, XGBoost achieves the best performance. For
instance, the XGBoost model achieves AUC values of 0.84 for Mozilla, 0.76 for Apache, and 0.74 for
Eclipse ecosystems. There exists a minuscule difference between the AUC values of the gradient
boosting tree-based models (i.e., XGboost, Catboost, LGBM) and Multi-layer Perceptron model
AUCs. This can be explained by the fact that all of these models are very efficient in interpreting
the complex relationships in our issue reports tabular data [55].

Table 9. The performance of our prediction models for the considered datasets. The values shown represent
the prediction of the issue reports that require a large change impact in terms of code churn size. Prec.
represents the precision.

Ecosystem Prec. Recall F-score AUC

Logistic
Regression

Mozilla 0.93 0.64 0.76 0.80
Apache 0.74 0.65 0.69 0.71
Eclipse 0.77 0.72 0.74 0.70

Naive
Bayes

Mozilla 0.86 0.44 0.58 0.68
Apache 0.80 0.54 0.64 0.71
Eclipse 0.77 0.47 0.58 0.63

SVM
Mozilla 0.94 0.62 0.74 0.79
Apache 0.74 0.65 0.69 0.72
Eclipse 0.78 0.71 0.74 0.70

Random
Forest

Mozilla 0.93 0.73 0.81 0.83
Apache 0.75 0.68 0.71 0.74
Eclipse 0.74 0.74 0.74 0.68

XGboost
Mozilla 0.93 0.72 0.81 0.84
Apache 0.74 0.68 0.71 0.76
Eclipse 0.76 0.77 0.76 0.73

Catboost
Mozilla 0.93 0.73 0.82 0.83
Apache 0.74 0.68 0.71 0.74
Eclipse 0.75 0.75 0.75 0.71

LGBM
Mozilla 0.93 0.73 0.82 0.83
Apache 0.74 0.69 0.71 0.73
Eclipse 0.71 0.81 0.76 0.67

Multi-layer
Perceptron

Mozilla 0.92 0.74 0.82 0.83
Apache 0.72 0.69 0.71 0.72
Eclipse 0.71 0.81 0.76 0.66
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Table 10. AUC performance of the three ecosystems with three different thresholds for the code churn size.

XGBoost-25% XGBoost-40% XGBoost-50%

Mozilla 0.78 0.73 0.70
Apache 0.67 0.64 0.61
Eclipse 0.67 0.63 0.60

Our approach is not sensitive to the threshold of the selection of the code churn classes
(i.e., small and large). We select XGBoost, the best performing model, to conduct the sensitivity
analysis. Table 10 show that for Mozilla, the AUC drops by 8% to 16% when the threshold is 25%
(i.e., XGBoost-25%) and 50% (i.e., XGBoost-50%) respectively. Similarly, for Apache, a drop of 7% to
13% when the threshold is 25% and 50% respectively. As for Eclipse, the AUC drops by 6% to 13%
when the threshold is 25% and 50%, respectively.

The model fit on the metrics, including the topics of issue reports, improves the base
model’s AUC by 5%. The model fit on all the metrics, including the topics of issue reports metrics
extracted in RQ1, achieves an AUC value of 0.78 on average (AUC 0.84 for Mozilla, AUC 0.76 for
Apache and AUC 0.73 for Eclipse) across the three ecosystems for classifying the issue report change
impact. This obtained AUC of 0.78 outperforms the AUC of the based model XGBoost-10-base fit on
the textual and characteristic metrics only, present in the issue report, that achieves an average of
0.73 (AUC 0.80 for Mozilla, AUC 0.71 for Apache and AUC 0.67 for Eclipse). This result suggests
that the topics of issue reports can support developers in predicting the change impact of fixing a
defect. For instance, we observe in Table 11, that Is GUI and Is User experience are among the top 5
influential metrics for Eclipse and Is database ranks 6th for Apache.

The number of attachments and the number of comments per developer are among the
top 3 influential metrics across the three ecosystems. Table 11 depicts the top 6 influential
metrics along their importance scores and ranks. The importance score is the average importance
score of the corresponding metrics. As we can notice, the top 6 metrics are ranked differently
across the systems. However, the number of attachments and the number of comments
per developer are among the top 3. This suggests that issue reports with more attachments
and developers in their discussions have a larger change impact. The presence of attachments,
including test cases, may indicate the complexity of a defect, thus leading to a larger change impact.
Similarly, a higher number of comments per developer in an issue may also be associated with a
more complex defect that is harder to solve.
We observe that the number of issues blocked ranks in second place for Mozilla. The

association between the number of issues blocked and the change impact can be attributed to the
fact that a defect that blocks several other defects may be used in several packages or in several
modules, which may have a larger change impact. In fact, Valdivia-Garcia et al. [107] quantified
the effect caused by blocking defects and found that blocking defects require between 1.2–4.7 more
lines of code changes than non-blocking defects.
The severity of the issue report, which represents the importance of the issue report,

is also an important metric for Apache projects. This result hints that severe defects may be
treated meticulously where additional coding practices are implemented, thus leading to a larger
change impact.

Similar to the ecosystem-level prediction, the performance of the software project-level
change impact prediction model is improved when the issue report topics metrics are
included.We perform a per software project prediction for the software projects of the sampled
ecosystems shown in Table 12 using XGBoost-10%. Table 12 shows that the per-software project
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Table 11. The top 6 most influential metrics in the XGBoost-10% model for Mozilla, Apache and Eclipse ranked
by their importance. Imp. represents the importance score obtained by the feature permutation approach.
The Rank column represents the clusters raking obtained by SK-ESD.

Metric Imp. Rank

Mozilla

# of attachments 0.1424 1
# of issues blocked 0.0271 2
# of comments per developer 0.0269 3
Has milestone 0.0114 4
Title of issue report 0.0093 5
Has version 0.0089 6

Apache

# of comments per developer 0.0559 1
# of attachments 0.0323 2
Is severe 0.0195 3
Description of issue report 0.0193 4
# of CC 0.0092 5
Is database 0.0066 6

Eclipse

# of comments per developer 0.1086 1
# of issues blocked 0.0365 2
# of attachments 0.0107 3
Is GUI 0.0090 4
Is User experience 0.0072 5
Description of issue report 0.0063 5

prediction model performance is improved by up to 5% in terms of AUC when the topics of issue
reports are fed to the machine learning model. Including the topics of issue reports metrics improves
the recall by up to 11% (i.e., JDT and AMBARI). The results suggest that the topics of issue reports
have a positive impact on the prediction model.

Summary of RQ 2

Our results propose that machine learning models such as XGBoost have the potential
to predict the change impact in terms of code churn size with a high AUC of 0.84, 0.76
and 0.73 for Mozilla, Apache and Eclipse. The topics of issue reports could be leveraged
to achieve higher accuracy for predicting the change impact for the three ecosystems. To
benefit from the change impact prediction models, we suggest to the reporters to attach
relevant documents to the issue reports, list the issues blocked by the defect in question
and indicate the accurate severity of the defect.

4.3 RQ3: Can we predict the change impact of resolving defects in terms of the number
of files changed?

4.3.1 Motivation. The number of files changed represents the amount of effort required to fix a
defect [89]. Previous work demonstrates that the code churn size and the number of files changed
in a defect fix are not highly correlated [42]. The amount of changed files is an indication of the
propagation of a code change. Some commits impact many files and require a change in several
locations, whereas others require a local change in a single function of one file. Furthermore, certain
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Table 12. The performance measures of our XGBoost-10 prediction models per software project. The values
shown represent the prediction of the issue reports that require a large change impact.

Software project Precision Recall F-score AUC

M
oz
ill
a Core 0.91 0.77 0.84 0.86

Core (without defect types) 0.90 0.76 0.82 0.85
Firefox 0.87 0.51 0.65 0.72
Firefox (without defect types) 0.86 0.55 0.67 0.72
Firefox OS 0.98 0.79 0.88 0.87
Firefox OS (without defect types) 0.97 0.78 0.86 0.85
Toolkit 0.90 0.64 0.75 0.80
Toolkit (without defect types) 0.89 0.63 0.75 0.68

A
pa
ch
e Ambari 0.60 0.78 0.68 0.61

Ambari (without defect types) 0.71 0.33 0.45 0.60
Hbase 0.86 0.78 0.81 0.83
Hbase (without defect types) 0.85 0.78 0.81 0.82
Hive 0.75 0.90 0.82 0.82
Hive (without defect types) 0.69 0.94 0.79 0.78
Spark 0.67 0.86 0.75 0.78
Spark (without defect types) 0.58 0.76 0.65 0.69

Ec
lip

se Platform 0.73 0.67 0.70 0.72
Platform (w/o defect types) 0.75 0.58 0.65 0.69
JDT 0.76 0.87 0.81 0.83
JDT (w/o defect types) 0.78 0.76 0.77 0.79
PDE OS 0.71 0.51 0.59 0.66
PDE OS (w/o defect types) 0.66 0.44 0.53 0.62
Equinox 0.65 0.61 0.63 0.69
Equinox (w/o defect types) 0.72 0.59 0.65 0.71

defect types might present fewer or more dependencies between files. Therefore, we predict the
change impact in terms of the number of files changed in this RQ.

4.3.2 Approach. In this RQ, our goal is to predict the change impact in terms of the number of
files changed. We follow the similar approach adopted in RQ2. We treat the problem as a binary
classification. We assign 1 to the prediction output Y if the required change impact is large and 0 if
small.
Dependent variable. The amount of files, i.e., small and large, needed to fix the defect is

considered the output of the prediction. To obtain the dependent variable, we sort the issue reports
by the number of changed files in ascending order. We assign the lower 10% issue reports a value
of 0 to the change impact, meaning that it requires a small change impact. We assign to the upper
10% a value of 1.

Independent variables and predictionmodels.We use the same 25 independent variables (i.e.,
textual metrics, characteristic metrics and topics of issue reportsmetrics) used in RQ2 as independent
variables. We split the data into training and testing following the time-based approach. We train
the eight machine learning models mentioned in the approach of RQ2, and we follow the same
hyperparameter pipeline (i.e., Random Search, Grid Search, and the 10-fold cross-validation) to
attain the best model performance. To evaluate the models, we refer to the precision, recall, F1Score
and AUC performance metrics.
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Sensitivity Analysis. We run the best performant model, with different thresholds for the
small-large binning of the number of files changed. We predict the change impact using three
thresholds 25%, 40%, and 50%.

4.3.3 Results. It is possible to successfully predict the change impact in terms of the
number of changed files by leveraging the issue reports information. In table 13, we report
the precision, recall, F1-Score, and AUC of the most performant model, XGboost. XGboost achieves
an AUC of 0.71, 0.82, and 0.73 for Apache, Mozilla and Eclipse respectively.

Our approach is not sensitive to the threshold of the selection of the small and large the
number of files changed. We observe in table 14 that the AUC drops when the upper and lower
threshold increases from 25% to 50% by 7%, 5% and 6% for Mozilla, Apache and Eclipse, respectively.

Table 13. The performance of our prediction models for the considered datasets. The values shown represent
the prediction of the issue reports that require a larger change impact in terms of the number of files changed.
Prec. represents the precision.

Ecosystem Prec. Recall F-score AUC

XGboost
Mozilla 0.92 0.71 0.80 0.82
Apache 0.72 0.62 0.66 0.71
Eclipse 0.84 0.74 0.79 0.73

Table 14. AUC performance of the three ecosystems with three different thresholds for the number of files
changed.

Ecosystem XGBoost-25% XGBoost-40% XGBoost-50%

Mozilla 0.75 0.71 0.68
Apache 0.66 0.64 0.61
Eclipse 0.67 0.64 0.61

Summary of RQ 3

It is feasible to predict the change impact of defects in terms of the number of files changed.
XGboost achieves an AUC between 0.71 and 0.82 for the three ecosystems.

5 IMPLICATIONS
We discuss in this section the possible implications of our findings that could be useful to practi-
tioners and researchers.

Leveraging the topics of issue reports. Identifying the topic of an issue report could help the
researchers and practitioners in many ways:

• Researchers could benefit from the topics of issue reports to improve the defect fixing
process. Some topics are easier to be fixed, and some others introduce challenges and require
more developers’ effort. For example, GUI defects might require manual investigations and
validations. As shown in Table 11, for Eclipse, the Is GUI and Is User experience are among
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the top 5 influential metrics predicting the change impact. Thus, integrating the topics of
issue reports in the process of the defect fixing could lead to more satisfying results.

• Practitioners could benefit from the topics of issue reports to improve the software project
from a specific perspective (i.e., defect topic). As shown in Table 5, for one specific system,
certain topics might be more frequent than others. Identifying the most frequent topics could
guide developers in mitigating these frequent defects in the system and put in place test cases
to detect these defects and hence improve the software.

• Practitioners could benefit from the topics of issue reports to improve the defect prioritization
process. The relationship between the topics of issue reports and the severity level of the defect
could help the developers recognize which topics should be treated with higher importance.
For instance, as we observe in RQ1, Server or Security defects could possibly be given more
priority than GUI defects in a software project belonging to the Web Server domain such as
Apache.

• Practitioners could benefit from the topics of issue reports to improve the defect assignment
process. Practitioners believe that defects belonging to the same topic tend to have similar
solutions [135]. Therefore, practitioners could assign to developers defects that belong to the
same topic which could consequently lead to a more efficient fixing process while avoiding
the context switching overhead.

Leveraging the change impact. Predicting the change impact could help the researchers and
practitioners in many ways :

• Researchers could benefit from the estimated small or large amount of change to improve
the existing automated triage tools. Practitioners expressed their need for an automated
triage tool that automatically assigns small defects, i.e., requiring small amount of change,
and require manual intervention when the defect requires large amount of change [135].
Therefore, we encourage researchers to design an automated bug triage tool that incorporates
both change impact prediction models, i.e., code churn and the number of changed files,
proposed in our work.

• Practitioners could benefit from the estimated change impact in terms of the number of
files changed, to implement an efficient manual defect triage process. Practitioners could
assign the defects that require a change in a large number of files (1) to developers that have
knowledge of a large part of the codebase and its modules’ dependency and (2) to developers
that have access to the various codebases.

• Practitioners could benefit from the two change impact dimensions, i.e., code churn and the
number of files changed proposed in our work to design an efficient defect triage process
that adeptly manages the limited human resources.

6 THREATS TO VALIDITY
Construct validity relates to a possible error in the data preparation. In RQ2, our results depend
on the metrics extracted from the issue reports and the source code of the associated commits. First,
we follow a widely used approach to map issue reports to commits [34, 56]. The used metrics have
been extensively used in prior empirical software engineering research. Second, we estimate the
change impact of defects in terms of code churn and the number of files changed. Although there
are other ways of estimating the change impact (e.g., the number of modules, operations, or classes
changed), measuring the lines of code and the number of files has been considered a common way
of estimating the amount of change [43, 75]. Therefore, we assert a strong construct validity.

To classify the issue reports as requiring small or large change impact, we select the lower 10%
and upper 10% of the issue reports as requiring small and large change impact, respectively. While
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this hyperparameter might be dependent on the selected dataset, we demonstrate that our approach
is not sensitive to the selected threshold

To automatically assign topics to issue reports, we adopt ETM, the state-of-the-art topic modelling.
Dieng et al. [31] demonstrate that ETM, the state-of-the-art topic modelling, outperforms LDA and
its variants in extracting topics in terms of topic quality and predictive performance. LDA is one of
the most used unsupervised topic modelling [26, 31, 40, 41]. Existing work in the realm of software
engineering used LDA, and other variations of LDA to tackle research questions related to defect
categorization [23, 27, 96], and bug report categorization [96, 133]. Therefore, we adopt ETM in
our study.

Internal validity relates to the concerns that might come from the internal methods used in our
study. The first concern comes from the manual assignment of topics to issue reports. To calculate
the accuracy of ETM, we manually assign topics to a statistically representative sample of issue
reports with a confidence level of 95% and a confidence interval of 10%, i.e., 288 issue reports in
total. To mitigate the possible human errors, we calculate Cohen’s kappa agreement score between
the two annotators, indicating a substantial agreement level. Although the annotators are not the
owners of the issue reports, we highlight that the annotators have five years of work experience
as software developers making them familiar with the reporting process and the topics of issue
reports. The second concern is related to the textual free-text field of the issue reports, particularly
the description. The description field might contain different noise types (e.g., steps to reproduce,
log execution and code fragment). To alleviate the noise, we manually check a sample of reports
and ensure we exclude all unwanted patterns from the descriptions. Third, the performance of the
predictive models might be influenced by the training and testing datasets. To alleviate this risk,
we adopt the 10-cross-validation technique in addition to adopting a time-based splitting strategy.”

External validity relates to the potential of generalizing our study results. To maximize the
ability to generalize our results, we include in our study more than 290,000 issue reports belonging
to three popular open-source ecosystems, i.e., Mozilla, Apache and Eclipse. Although our approach
is evaluated on open source projects, it can be easily applied to other projects as long as the issue
report information can be scraped. Similarly, the predictive model can be applied to other projects
as long as the metrics are extracted and preprocessed, and the identification of influential metrics
on a model can be easily performed. In addition, our results are limited to the types of software
projects selected within each ecosystem. To eliminate bias in the software projects’ characteristics,
we collect issue reports of 490 different software projects belonging to the Apache, Mozilla and
Eclipse ecosystems. The analyzed software projects belong to diverse topics such as web servers,
browsers, mail clients, IDE, and database.

7 RELATEDWORK
In this section, we present the plethora of available literature closely related to our research and
summarize the contributions in each area: defect taxonomies and classifications, defect fixing effort
prediction, defect localization, and change impact analysis.

7.1 Classifying software defects.
Generic defect taxonomies. In an attempt to understand possible defect types, researchers
suggest taxonomies targeting general defects but focusing on one specific dimension or several
dimensions, e.g., impact, category, root cause and life cycle phase. Several studies propose fine-
grained taxonomies [44, 63, 81] that are defined based on code patterns that represent defects, e.g.,
conditional statements and initialization errors. Ni et al. [81] exploit defect fixes from source code
to an AST level and categorize defects into fine-grained root cause categories, such as conditional
test errors and data verification errors. Some researchers propose to map code-related fine-grained
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categories to coarse-level dimensions. For example, Li et al. [63] manually mapped fine-grained
code-related root causes to three coarse-level categories, i.e., memory, concurrency and semantic.
The aforementioned approaches differ from our study in two ways: (1) present a fine-grained

taxonomy for defects that is code-related, which is out of the scope of our study, and (2) when
providing coarse-level matching for the fine-grained code-related root causes, they are limited to
only a few categories, i.e., memory, concurrency and semantic.

Other researchers introduce coarse-level defect taxonomies. Catolino et al. [23] perform an empir-
ical study to find coarse-level defect categories. The authors manually analyze 1,280 defects and
build a taxonomy of 9 root cause categories: configuration, GUI, Performance, Program anomaly,
Test-code, Database, Network, Permission and Security issues. Catolino et al. then model an au-
tomated supervised classifier to label defects. Although the classifier achieves 64% as F-measure
in general across all the defect categories, it fails to predict the defects for the configuration and
network categories. Ahmed et al. [5] also present a framework, CapBug, which classifies defects
according to the coarse-level categories. CapBug is similar to Catolino et al.’s approach in two
ways. CapBug follows a supervised technique to categorize issue reports. It relies on manually
predefined categories. Unlike Catolino’s work, CapBug studies six defect categories, i.e., Program
anomaly, GUI, Network or Security, Configuration, Performance, and Test code. CapBug achieves
88% accuracy in predicting the category of the defects by using the Random Forest model and
SMOTE technique to deal with class imbalance.
The aforementioned classification approaches provide automated techniques to classify the

defects based on the coarse-level categories. However, these approaches suffer from the following
disadvantages: (1) it requires an expensive amount of human effort to categorize the issue reports
manually, and (2) the output and quality of the classifiers depend on the labelled training data and
the predefined set of defect categories. In contrast, our proposed approach does not require any
labelled data.

Specific defect taxonomies. A rich collection of research work focuses on a specific program-
ming language [3, 28, 39] or defects discovered in a specific system [49, 50, 83–85, 93, 105, 109, 130,
131] or even a specific class of defects[4, 33, 101, 106, 111, 125]. For example, Ciborowska et al. [28]
shed light on the differences in the characteristics and localization of the defect across COBOL
and non-COBOL software. To achieve this, Ciborowska et al. refine the taxonomy introduced by
Catolino et al. [23] by considering the opinion of surveyed developers.

Some researchers have examined the types of defects related to specific systems, such as AI-based
systems [49, 50, 105, 131]. Others amend existing taxonomies to classify AI defects. For example,
Thung et al. [105] study the characteristics of 500 defects belonging to three machine learning
systems (Apache Mahout, Apache Lucene, and Apache OpenNLP). Thung et al. manually categorize
defects leveraging the taxonomy designed by Carolyn et al. [93] and include an additional category,
‘configuration’. Other researchers design new taxonomies. For example, Zhang et al. [131] propose
a new taxonomy for TensorFlow defects by analyzing 175 issue reports.

Researchers also investigate specific classes of defects. For instance, the research community shed
light on understanding the characteristics of performance defects [101, 125, 132] since they lead to
user dissatisfaction. For example, Sanchez et al. [101] propose a taxonomy of three dimensions, i.e.,
effects, causes and contexts of defects for real-world performance defects. In an effort to support
practitioners build more secure software, researchers propose taxonomies for security defects
[4, 106, 125].

The above proposed taxonomies represent only a subset of the defects that can occur in software
systems, and therefore present limited capabilities in supporting developers in understanding other
defect types. Our study includes all types of defects and is not limited to a specific defect class.
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7.2 Defect fixing effort
Defect fixing time. Several studies leveraged the issue report information (i.e., component, priority
and severity) to predict the defect fixing effort in terms of time required for fixing defects [9, 10, 37,
46].

Giger et al. [37] carry out an empirical study to investigate the possibility of predicting the defect
fixing time from the issue report attributes. In their study, Giger et al. aim to classify the issue
reports into two classes: requiring Slow or Fast fixing effort. The authors build a decision trees model
that achieves a precision of 0.654. Giger et al. find that assignee, reporter and monthOpened are
the top 3 issue report attributes influencing the predicting fixing effort time. Similarly, Ardimento
and Mele [10] also treat the fixing time prediction as a binary classification problem (i.e., Slow
and Fast classes). The authors treat the problem as a supervised text categorization task but used
BERT [30] with a classifier to predict the fixing time. In their approach, the authors propose a new
set of features, including the description of the issue and developers’ comments on which they
perform transfer learning.
In contrast to the above, some researchers treat the fixing effort prediction as a regression

problem. Yuan et al. [124] propose BuFTNN, a novel neural network model that leverages several
features (i.e., developers’ activities, developers’ sentiments, the semantics of bugs, and efforts
caused by understanding and analyzing source code) to predict a defect’s fixing time. The proposed
model is validated on four real-life projects, including Eclipse, and outperforms the state-of-the-art,
DeepLSTMPred [94], effort prediction model by 7.3% in F1-score, on average.
Another line of work handles the fixing effort prediction problem as information retrieval. For

instance, the time required to fix a defect is anticipated by querying textually similar issue reports
marked as fixed. The fixing time of the new issue report is then estimated by relying on the fixing
time of similar retrieved reports. Weiss et al. [112] rely on the k-Nearest Neighbors algorithm
combined with textual similarity to identify similar defects. Zhang et al. [128] follow a similar
approach to Weiss et al.; however, they focus on commercial projects.
In the above studies, the fixing time is calculated as the time elapsed between the issue being

reported/assigned and resolved. However, the estimated time might not indicate the actual fixing
time. In some cases, developers might be working on several tasks or working part-time. In other
instances, the issue report status might not be updated on time. Different from the above studies
that predict the fixing effort in terms of time, we measure the change impact, i.e., code churn size
and the number of files changed, as a proxy for the fixing effort. Our study complements the above
approaches.
Code churn size.Measuring lines of code has been considered a standard way of estimating

the developer effort [18]. Nevertheless, the possibility of predicting the defect fixing effort in terms
of code churn (i.e., number of lines of code modified) remains scarcely explored. To the best of
our knowledge, Thung’s study [104] is the only existing work that predicts defect fixing effort
by considering the code churn size. Thung designs a supervised machine learning approach to
classify issue reports into low and high categories. The author fed the summary and description
of the issue report as input to a Support Vector Machine model. Thung evaluates the model on
1,029 bugs from hadoop-common and struts2 and achieves an AUC of 0.61. Although both Thung’s
work and ours aim to predict the fixing effort in terms of code churn size, our study differs in
several dimensions. First, we utilize a different set of features as independent variables. For instance,
we use 25 metrics, of which 10 are extracted from the issue report, and 15 are synthesized based
on the identified issue topic. Second, we implement eight different machine learning models and
use a large dataset of 298,548 issue reports as opposed to 1,029 in the case of Thung’s work. In
addition, we also experiment with several thresholds for binning the issue reports into small and
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large change impact categories, whereas, in Thung’s work, the chosen classification threshold is
not justified.

7.3 Defect localization
Defect localization is one of the crucial yet most costly and time-consuming steps of software
maintenance [32]. There are three widely used families of defect localization techniques: Spectrum-
based (SBBL), mutation-based (MBBL) and Information retrieval-based (IRBL). SBBL techniques [21,
113, 129] employ a series of test cases to identify the buggy code spectra. SBBL is considered a fine-
grained defect localization as it is capable of pointing the buggy statement. MBBL techniques [24, 45,
118] employ test results after mutating the program to determine the buggy code. IRBL techniques
employ information from the issue report to localize the defect. IRBL techniques focus on the textual
similarity between the issue report description and the source code [115]. In IRBL techniques,
program entities of different granularity might be identified as faulty components. Some research
work [122] points to the files containing the defect. For instance, Chen et al. [25] propose Pathidea,
an information retrieval defect localization approach that relies on both log snippets and stack
traces in issue reports to localize the defect file. Other research work [14, 77, 114, 115] focuses on
identifying the commit that caused the defect. One team at Facebook proposes Bug2Commit [77],
an IRBL approach that leverages unsupervised techniques to find commit-level defects. Both
IRBL localization approaches and our work leverage the issue reports information to support
the developers with the software maintenance task. Our research work complements the defect
localization line of work. The defect localization approaches seek to identify the elements of a
program causing the failure with different granularity, i.e., statement, method and file. However,
our work focuses on predicting the change impact, i.e., the amount of change, in terms of lines of
code and the number of files changed.

7.4 Change impact analysis
Software Change Impact Analysis (CIA) represents a collection of techniques that help developers
identify the effects of a change or to estimate the amount of change needed [19] during the software
maintenance and evolution phase. Depending on the technique and its application, CIA can be
helpful before implementing the change (e.g., predicting the change impact) or after implementing
it (e.g., performing change propagation) [61]. Researchers define metrics and prediction methods
to conduct CIA along four main CIA quantification parameters: (1) instability (i.e., likelihood that
various software artifacts change simultaneously), (2) amount of change (i.e., the size of changes
affecting a software artifact), (3) change proneness (i.e., likelihood that a software artifact will
change due to bug fixes or requirement changes), (4) and changeability (i.e., the level of ease related
to the affecting the changes to a software artifact) [57]. The existing research related to the amount
of change is the closest to our work. Existing work quantifies the amount of change in terms of
code churn [43, 75], the number of changed artifacts (i.e., modules, operations, members, classes,
or files) [97] and incremental changes [7]. Similar to our goal, some existing work estimates the
change set, i.e., the amount of change, using static analysis [91, 99], dynamic analysis [20, 47] or
Mining Software Repositories (MSR) [36, 126]. MSR techniques leverage historical information
from the defect artifacts and source code repository to predict the potential code change. Gethers
et al. [36] leverage the issue report textual information and the source code to estimate the amount
of change. The authors adopt information retrieval methods to couple the description of the issue
report to the potential software entity, e.g.,method. Zanjani et al. [126] couple information retrieval,
machine learning and source code analysis to build a corpus of source code entities queried when
an issue report description is submitted. There are key differences between our work and the
aforementioned change impact related research. First, the existing change impact research work

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2022.



Predicting the Change Impact of Resolving Defects by Leveraging the Topics of Issue Reports in Open Source Software
Systems 27

estimates the amount of change after identifying the change set by considering the source code. In
our work, we focus on a simple approach that predicts the amount of change by only leveraging
information from issue reports and without having to identify first the actual change set in the
source code. Second, we predict the amount of change in terms of code churn and the number of
files changed using a new set of features extracted from the issue reports instead of only relying on
the textual description. In addition to extracting 10 metrics from the issue reports, we synthesize 15
new collective features, i.e., the topics of issue reports, which we extract through topic modelling
and include in the predictive model. Furthermore, we investigate the most influential metrics for
predicting the change impact.

8 CONCLUSION
With the prevalence of large-scale and complex software systems, it is crucial to support developers
in defect-fixing related activities as it is estimated that at least 50% of the developer’s time is spent
on debugging and fixing defects [1, 2]. Fixing a defect requires the developer to assign the defects,
which entails manual work. In this paper, we aim to support the practitioners by helping them
identify the topics of issue reports and leveraging the topics in predicting the change impact, i.e.,
small or large amount of change, required to fix the defects.

Firstly, we automatically assign topics (i.e., performance, UI, database) to issue reports using the
state-of-the-art topic modelling technique ETM. We apply our approach to 298,548 issue reports
from Mozilla, Apache and Eclipse. Our approach successfully identifies 15 topics of issue reports
and achieves an accuracy of 79%, on average. Secondly, we train 8 models to predict the change
impact in terms of code churn size and the number of files changed leveraging 25 metrics. XGBoost
achieves an AUC of 73–84%. We find that the topics of issue reports improve the recall of the
predictive model by up to 45% per software project and the AUC by 5% on average across the
ecosystems. Finally, we measure the metrics’ power in predicting the amount of change size. We
find that the number of attachments and comments per developer is among the top 3 influential
metrics across the three ecosystems. To make the most of the change impact predictive model, we
suggest that 1) the developers attach relevant documents to the issue reports, 2) list the issues that
are blocked by the defect in question and 3) indicate the accurate severity of the defect.
In the future, we aim to include more metrics in our predictive model. Furthermore, we aim to

explore how we can incorporate the predicted amount of change into existing defect assignment
tools.
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