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Abstract—Large Language Models (LLMs) are increasingly
applied to data-intensive workflows, from database querying to
developer observability. Yet the effectiveness of these systems is
constrained by the volume, verbosity, and noise of real-world
text-rich data such as logs, telemetry, and monitoring streams.
Feeding such data directly into LLMs is costly, environmentally
unsustainable, and often misaligned with task objectives. Parallel
efforts in LLM efficiency have focused on model- or architecture-
level optimizations, but the challenge of reducing upstream input
verbosity remains underexplored.

In this paper, we argue for treating the token budget of
an LLM as an attention budget and elevating task-aware text
reduction as a first-class design principle for language–data
systems. We position input-side reduction not as compression, but
as attention allocation: prioritizing information most relevant to
downstream tasks.

We outline open research challenges for building benchmarks,
designing adaptive reduction pipelines, and integrating token-
budget–aware preprocessing into database and retrieval systems.
Our vision is to channel scarce attention resources toward
meaningful signals in noisy, data-intensive workflows, enabling
scalable, accurate, and sustainable LLM–data integration.

Index Terms—Large language models (LLMs), task-aware text
reduction, log analysis, sustainable AI, Continuous Integration
(CI), log reduction, information retrieval and database integra-
tion

I. INTRODUCTION

Large Language Models (LLMs) are increasingly embedded
into data-intensive workflows, powering natural language in-
terfaces for databases, observability platforms, and developer
tools [1, 2]. They enable capabilities such as conversational
querying, automated debugging, and intelligent system triage,
transforming how users interact with large-scale, heteroge-
neous data [3, 4]. As organizations adopt LLMs at the core
of data management and software engineering processes, the
integration of language and data has become both a research
challenge and a practical necessity.

However, the effectiveness of LLMs in these settings is
constrained by real-world data. Logs, telemetry streams, and
execution traces are verbose, noisy, and dominated by task-
irrelevant content [5, 6]. Continuous Integration (CI) pipelines,
for example, may generate thousands of lines of build and test
output, much of it boilerplate or repeated status updates [7]–
[9]. Feeding such raw data directly into LLMs inflates infer-

ence cost and latency, wastes token budgets, and introduces
noise that obscures the underlying signal. These inefficiencies
reduce accuracy and usability while amplifying environmental
costs [10]–[14].

Prior work has explored log compression, structural parsing,
and deduplication, producing gains in storage and indexing
efficiency [15]–[18]. Recent efforts even apply LLMs for
anomaly detection and log filtering [19, 20]. Yet most tech-
niques remain task-agnostic: they reduce size without regard
for the semantic needs of downstream tasks, often preserving
large volumes of irrelevant content that limit effectiveness in
token-sensitive workflows.

We argue for a new paradigm: task-aware text reduction
pipelines as a first-class component of language–data inte-
gration. Rather than indiscriminately compressing or parsing,
these pipelines act as intelligent preprocessing layers that pri-
oritize semantic relevance and explicitly treat the token budget
of an LLM as an attention budget. By foregrounding task
relevance, such pipelines promise three benefits: (1) scalability
through token efficiency, (2) sustainability by lowering energy
and infrastructure costs, and (3) accuracy by focusing attention
on the most relevant signals. This paradigm is complementary
to model- and architecture-level efficiency work [21]–[23] and
retrieval-augmented generation and indexing approaches [24]–
[26].

Contributions. This paper makes the following contributions:
• Conceptual reframing: We introduce input reduction as

an attention allocation problem, positioning task-aware
reduction as a complementary layer alongside model- and
architecture-level efficiency methods [21]–[23].

• Research agenda: We outline open challenges in eval-
uation benchmarks, adaptive reduction strategies, token-
budget–aware indexing, and sustainability metrics [24]–
[26], charting a roadmap for scalable and environmentally
responsible integration of LLMs with real-world data
systems.

• Domain generality: We highlight opportunities for task-
aware reduction beyond software logs, including health-
care [27]–[29], the Internet of Things [30, 31], and
other data-intensive domains where verbosity threatens
efficiency and accuracy.
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Paper Organization. The rest of this paper is organized as
follows. Section II provides background and reviews related
work on log analysis and the use of LLMs in this context.
Section III introduces our vision for task-aware text reduction
pipelines as a new abstraction layer for language–data systems.
Section IV outlines our research agenda and discusses key
open challenges. Finally, Section V concludes the paper and
suggests directions for future work.

II. BACKGROUND AND RELATED WORK

Prior work on log analysis has explored compression, struc-
tural parsing, and deduplication as strategies to manage the
scale of text-rich data. For example, compression techniques
improve log storage efficiency [15], while template-based
methods such as LogZip [16], Drain [17], and Spell [18] re-
duce structural variability and support downstream processing.
Earlier efforts in anomaly detection mined console logs to
identify large-scale system problems [3]. These approaches
have proven effective for storage and indexing but remain
largely task-agnostic, often retaining significant amounts of
irrelevant content.

Recent advances have begun to apply LLMs directly to
log data. Qi et al. proposed LogGPT for anomaly detection,
showing the potential of transformer-based models for log
understanding [19]. More recently, Huang et al. introduced
LoFI, a prompt-based method for extracting fault-indicating
information from logs [20]. While promising, these approaches
incur high inference costs or focus on specific tasks, rather
than providing a general, reusable reduction layer. In contrast,
we position task-aware text reduction as a general-purpose
paradigm for directing scarce attention resources toward se-
mantically relevant tokens.

A parallel line of work in natural language processing has
focused on reducing the computational footprint of large mod-
els. Surveys on efficient Transformers [21] and architectural
optimizations such as FlashAttention [22] propose model-
level techniques to accelerate inference, while speculative
decoding improves token generation efficiency [23]. These
methods operate primarily at the level of model architecture,
complementary to our focus on upstream input reduction as
an attention-allocation problem.

Software engineering and sustainability research further
highlights the environmental costs of large-scale computa-
tion [10]–[14, 32, 33]. These studies argue for approaches
that balance performance with energy efficiency and ecolog-
ical impact, motivating our exploration of reduction-oriented
preprocessing as a sustainability principle.

In database and information retrieval research, retrieval-
augmented generation (RAG) grounds LLMs in structured
knowledge sources [24], and recent work explores efficient
indexing strategies tailored for LLM workloads [25]. Classic
IR theory on indexing and query optimization [26] provides
additional motivation for treating task-aware preprocessing
pipelines as first-class components in the language–data stack.

III. VISION: TASK-AWARE TEXT REDUCTION PIPELINE

We envision task-aware text reduction pipelines as a new
abstraction layer for language–data systems. These pipelines
operate between raw data streams and LLM inference, filtering
and restructuring content so that only semantically relevant
information is retained. Unlike compression or syntactic pars-
ing [16]–[18], which aim to improve storage or indexing
efficiency, task-aware pipelines are explicitly guided by the
needs of downstream tasks such as failure triage, anomaly
detection, or query answering.

This paradigm promises three key benefits. First, scalability:
by reducing token counts before inference, pipelines lower
latency and computational overhead. Second, sustainability:
trimming unnecessary content reduces the carbon footprint of
LLM-driven analysis by minimizing redundant computation
and data transfer [11]–[13, 32, 33]. Third, accuracy: by
exposing models only to semantically relevant signals, task-
aware reduction can improve the precision and reliability of
downstream outputs. In short, we treat the token budget of an
LLM as an attention budget, and argue that reduction pipelines
are essential to aligning scarce attention resources with the
signals that matter most.

We propose three design principles for building such
pipelines. Task relevance first: retain the information that
contributes directly to the diagnostic or analytic objective,
while aggressively filtering boilerplate or low-information
content. Token-budget awareness: treat inference cost as a
resource allocation problem, preserving the tokens that matter
most under explicit budget constraints. Hybrid structural–
semantic reduction: combine structural cues (e.g., templates,
schema metadata, system events) with semantic methods (e.g.,
embeddings, task-specific prompts) to identify the segments
most relevant to the task.

The scope of task-aware reduction extends well beyond
Continuous Integration logs. Similar challenges arise in cloud
observability, where vast telemetry streams contain only sparse
anomaly signals; in system monitoring, where traces and
events are verbose yet repetitive; and in knowledge graphs,
where rich metadata and contextual annotations often over-
whelm reasoning pipelines. Beyond software systems, health-
care data provides a striking example: clinical notes and
electronic health records are lengthy and often dominated by
boilerplate, yet only a subset of the content is relevant for clin-
ical decision-making. Recent work on clinical summarization
demonstrates how reduction can preserve diagnostic fidelity
while eliminating unnecessary text [27]–[29]. Likewise, in the
Internet of Things, continuous sensor and telemetry streams
generate massive volumes of largely repetitive data, where the
challenge lies in surfacing sparse and semantically important
anomalies. Surveys and early frameworks highlight the oppor-
tunity for reduction and filtering as prerequisites for effective
LLM-based reasoning in IoT domains [30, 31].

Across these settings, task-aware pipelines balance effi-
ciency with fidelity, creating a unifying paradigm across
domains from logs to medical notes to sensor data.



In short, task-aware text reduction offers a foundation for
rethinking the role of preprocessing in language–data sys-
tems. By foregrounding relevance, these pipelines complement
model-level efficiency advances and retrieval-based methods,
establishing a new paradigm for scalable, sustainable, and
accurate LLM–data integration.

IV. RESEARCH AGENDA AND OPEN CHALLENGES

Task-aware text reduction pipelines open a rich set of
research opportunities at the intersection of natural language
processing, databases, and software engineering. Realizing the
full potential of this paradigm requires addressing several open
challenges.

A. Automated Relevance Labeling

Manual annotation of task-relevant content is not scalable
across large datasets or domains. Similar scalability challenges
were observed in empirical analyses of Continuous Integration
(CI) build data [9], which examined the interplay between
build durations and breakages across thousands of integration
runs and highlighted the difficulty of managing large, noisy
datasets. In the context of root cause analysis, annotation
is usually performed using manual log analyses to identify
patterns associated with different types of errors [34, 35].
To address scalability challenges, future work should explore
automated approaches to relevance labeling, including (1)
heuristic rules that capture common signals such as error
codes or exceptions, (2) weak supervision that combines noisy
labels from multiple sources, and (3) LLM-assisted annota-
tion to bootstrap relevance classifiers with minimal human
effort [19, 20]. Recent work on root-cause analysis with LLM-
based agents also suggests that domain-specific relevance
signals can be learned and reused across settings [1, 2]. Such
approaches would enable pipelines that automatically direct
scarce attention budgets to the most meaningful tokens.

B. Adaptive Reduction Strategies

The optimal degree of reduction varies by context: com-
pilation errors, for instance, may tolerate aggressive pruning,
whereas sparse telemetry requires more conservative filtering.
Designing adaptive pipelines that tailor reduction dynamically
by failure type, domain, or query intent is an important
direction for ensuring both efficiency and diagnostic fidelity.
This may require hybrid approaches that combine learned
models with domain-specific heuristics [1, 2] and should be
evaluated alongside model-level efficiency methods such as
efficient Transformers [21], FlashAttention [22], and specula-
tive decoding [23]. Together, these methods would enable both
computation-aware and attention-aware reduction.

C. Integration with Database and IR Systems

Task-aware reduction should not operate in isolation but
integrate with existing data management infrastructures. One
opportunity is token-budget–aware indexing, where reduced
representations become first-class citizens in query engines.
Another is hybrid retrieval pipelines that combine traditional

IR methods with LLMs, leveraging reduction to shrink the
search space and improve response latency. Embedding re-
duction into query planning itself may unlock new forms of
task-aware optimization [24]–[26]. In each case, the goal is to
align attention budgets with the segments most relevant to the
query.

D. Sustainability Metrics and Benchmarks

A key motivation for reduction is sustainability, yet little
work quantifies its real-world benefits. Future efforts should
develop benchmarks that measure energy consumption, car-
bon footprint, and cost savings across LLM pipelines with
and without reduction. These metrics would help compare
techniques, guide system design, and motivate the adoption
of reduction as an environmental as well as technical best
practice [10]–[12, 32, 33]. Such benchmarks would clarify
the sustainability impact of directing attention away from
redundant tokens.

E. Beyond Logs

Although software logs highlight the challenge of verbosity,
task-aware reduction applies equally to other domains.

In telemetry and observability, pipelines could surface
sparse anomaly signals from large monitoring streams. In
system monitoring, task-aware filters could trim redundant
events while preserving causal signals. In knowledge graphs,
reduction may help preprocess verbose metadata and contex-
tual annotations for efficient reasoning.

Beyond software engineering, healthcare data offers a strik-
ing case. Clinical notes and electronic health records (EHRs)
are lengthy, redundant, and often dominated by boilerplate,
yet only a small subset of the content is critical for clinical
decision-making. Recent advances in clinical summarization
demonstrate that reduction can preserve essential signals while
improving diagnostic support and mitigating hallucination
risks [27]–[29].

Similarly, in the Internet of Things, continuous sensor and
telemetry streams generate massive volumes of repetitive data,
with only rare anomalies or outliers being relevant. Applying
task-aware reduction here would enable LLMs to reason ef-
fectively over IoT data without being overwhelmed by redun-
dancy. Surveys and prototypes highlight the need for scalable
preprocessing and filtering in IoT-LLM integration, pointing to
reduction as a prerequisite for real-world deployment [30, 31].

Each of these domains poses unique challenges, from
domain-specific semantics in clinical text to high-frequency
noise in IoT data. Yet all share the same fundamental need:
directing limited attention budgets toward the tokens that
matter most.

F. Call to the Community

We call on the community to treat task-aware reduction
as a foundational design principle for language–data systems.
Just as indexing and query optimization transformed relational
databases, relevance-driven reduction has the potential to re-
shape how unstructured and semi-structured data is processed



in LLM pipelines. Achieving this vision requires collab-
oration across natural language processing, databases, and
software engineering communities, building on both model-
level efficiency advances [21, 22] and data-level retrieval
frameworks [24, 25].

V. CONCLUSION

This paper has argued for task-aware text reduction
pipelines as a cornerstone of future language–data systems.
By foregrounding semantic relevance, these pipelines address a
critical gap in current approaches, enabling scalable, accurate,
and sustainable integration of LLMs with noisy, text-rich data
sources [10]–[14, 32, 33].

We have positioned input reduction not as a storage or
compression problem, but as an attention allocation problem:
treating the token budget of an LLM as an attention budget
that must be directed toward the most relevant signals. This
shift in perspective opens a research agenda around automated
relevance labeling [19, 20], adaptive reduction strategies [1, 2],
hybrid structural–semantic techniques, and integration with
database and retrieval systems [24]–[26].

The challenges we highlight are not confined to software
logs. They extend to healthcare, where clinical notes and
electronic health records demand task-aware summarization
to support decision-making [27]–[29], and to the Internet
of Things, where continuous sensor streams require filtering
to surface rare anomalies [30, 31]. These diverse domains
underscore the generality of reduction as a unifying paradigm
for noisy, high-volume, text-rich data.

These directions complement model- and architecture-level
efficiency methods [21]–[23], together defining a multi-layered
approach to efficiency. We encourage the community to
treat task-aware reduction not as an afterthought, but as a
foundational design principle—just as indexing transformed
relational databases, reduction has the potential to reshape how
unstructured and semi-structured data is processed in LLM
pipelines. Embracing this principle is a step toward building
hybrid, scalable, and sustainable systems that define the next
generation of language–data fusion.
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