
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Enhancing Performance Bug Prediction Using Performance Code
Metrics

Guoliang Zhao
IBM

Markham, Canada
Guoliang.Z@ca.ibm.com

Stefanos Georgiou
simpleTechs

Budapest, Hungary
stefanos@simpletechs.net

Ying Zou
Department of Electrical and

Computer Engineering, Queen’s
University

Kingston, Canada
ying.zou@queensu.ca

Safwat Hassan
Faculty of Information, University of

Toronto
Toronto, Canada

Safwat.hassan@utoronto.ca

Derek Truong
IBM

Markham, Canada
trong@ca.ibm.com

Toby Corbin
IBM

Southampton, United Kingdom
corbint@uk.ibm.com

ABSTRACT
Performance bugs are non-functional defects that can significantly
reduce the performance of an application (e.g., software hanging
or freezing) and lead to poor user experience. Prior studies found
that each type of performance bugs follows a unique code-based
performance anti-pattern and proposed different approaches to de-
tect such anti-patterns by analyzing the source code of a program.
However, each approach can only recognize one performance anti-
pattern. Different approaches need to be applied separately to iden-
tify different performance anti-patterns. To predict a large variety
of performance bug types using a unified approach, we propose an
approach that predicts performance bugs by leveraging various his-
torical data (e.g., source code and code change history). We collect
performance bugs from 80 popular Java projects. Next, we propose
performance code metrics to capture the code characteristics of
performance bugs. We build performance bug predictors using ma-
chine learning models, such as Random Forest, eXtreme Gradient
Boosting, and Linear Regressions. We observe that: (1) Random
Forest and eXtreme Gradient Boosting are the best algorithms for
predicting performance bugs at a file level with a median of 0.84
AUC, 0.21 PR-AUC, and 0.38 MCC; (2) The proposed performance
code metrics have the most significant impact on the performance
of our models compared to code and process metrics. In particu-
lar, the median AUC, PR-AUC, and MCC of the studied machine
learning models drop by 7.7%, 25.4%, and 20.2% without using the
proposed performance code metrics; and (3) Our approach can
predict additional performance bugs that are not covered by the
anti-patterns proposed in the prior studies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04. . . $15.00
https://doi.org/10.1145/3643991.3644920

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Software testing and debugging.

KEYWORDS
Performance bugs, Performance anti-patterns, Performance code
metrics, Performance bug prediction

ACM Reference Format:
Guoliang Zhao, Stefanos Georgiou, Ying Zou, Safwat Hassan, Derek Truong,
and Toby Corbin. 2024. Enhancing Performance Bug Prediction Using Per-
formance Code Metrics. In 21st International Conference on Mining Software
Repositories (MSR ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3643991.3644920

1 INTRODUCTION
Large-scale software systems are becoming increasinglymore promi-
nent in our society. High performance is critical for the user percep-
tion and the quality of software systems. However, user perception
and software system’s quality can be affected negatively by perfor-
mance bugs such as software hanging or freezing [70]. For instance,
performance bugs (e.g., memory leak bugs) can deteriorate the re-
sponsiveness and throughput of software systems, which results in
poor user satisfaction and waste of computation [66, 69]. Such bugs
exist widely in released software systems, even in well tested com-
mercial products such as Windows 7’s Windows Explorer [47, 65].

Prior studies [21, 61, 69, 90, 91] study the characteristics of per-
formance bugs and find that fixing performance bugs is more time-
consuming compared to non-performance bugs. Similarly, prior
study [98] finds that most performance issues are caused by poor
architectural decisions and fixes usually require design-level op-
timizations instead of simple code changes. Thus, it is important
to predict performance bugs to provide developers warnings at an
early stage of software development phase and help developers fix
performance bugs (e.g., conduct design-level optimization [98]).

Various prior approaches [25, 38, 68, 71, 93] have been proposed
to recognize performance bugs at the development phase. For ex-
ample, anti-patterns are design and implementation styles which

1

https://doi.org/10.1145/3643991.3644920
https://doi.org/10.1145/3643991.3644920

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MSR ’24, April 15–16, 2024, Lisbon, Portugal Guoliang Zhao, Stefanos Georgiou, Ying Zou, Safwat Hassan, Derek Truong, and Toby Corbin

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

lead to poor source code quality [80] and existing studies iden-
tify anti-patterns that lead to performance bugs, such as data cor-
ruption hang bugs [25], redundant traversal bugs [71], memory
and resource leak bugs [38], and synchronization bugs [93]. The
anti-patterns (e.g., the exit condition of a loop depends on I/O
operations) are used as restricted rules to check if source code
contains performance bugs. In addition, prior defect prediction
studies [12, 13, 15, 31, 49, 60, 64, 94, 96, 97] use code and process
metrics that are derived from source code and code change history
to predict defects (not specific to performance bugs). However, the
prior approaches have the following limitations.

• Limitation of prior defect prediction approaches. The
code and processmetrics used in defect prediction approaches
are designed to detect any type of bugs. Therefore, the prior
defect prediction approaches [12, 13, 15, 31, 49, 60, 64, 94,
96, 97] do not consider the code characteristics specific to
performance bugs, which may impact prediction accuracy.

• Limitations of prior anti-pattern based approaches.
Each approach can only identify one performance anti-
pattern. It is time-consuming to configure and apply differ-
ent approaches separately to identify different performance
anti-patterns. Moreover, prior approaches [25, 38, 68, 71, 93]
cannot predict the performance bugs that do not follow the
identified anti-patterns.

To address the mentioned limitations, we propose a set of perfor-
mance code metrics that capture the code characteristics that can
lead to poor performance. Our work combines performance code
metrics with the source code and process metrics used in defect
prediction studies to build models for predicting performance bugs
at file level. Different from the prior studies [25, 38, 68, 71, 93], the
proposed performance code metrics measure code features (e.g.,
the number of I/O operations and the number of loops) instead
of finding restricted rules that match anti-patterns. We conduct
experiments on 80 open-source Java projects obtained from GitHub.
Our work aims to address the following research questions (RQs):

RQ1. What is the performance of our approach in predict-
ing performance bugs at file level?

We utilize seven well-known machine learning algorithms used
in prior defect prediction studies [3, 82] such as Random Forest,
Naive Bayes, and Logistic Regression. Our findings suggest that Ran-
dom Forest and eXtreme Gradient Boosting algorithms achieve the
best performance with a median value of 0.84 AUC, 0.21 Precision-
Recall AUC (PR-AUC), and 0.38 Matthews Correlation Coefficient
(MCC) for predicting performance bugs at file level.

RQ2. Which group of metrics affect the performance of
our models the most?

In this RQ, we study the performance effects of the group met-
rics on seven machine learning models. To build machine learning
models, we use three groups of metrics (i.e., code metrics, process
metrics, and performance code metrics). We observe that the pro-
posed performance code metrics are the most important metrics
in the studied machine learning models. Specifically, the AUC, PR-
AUC, and MCC of the seven studied machine learning models drop
a median of 7.7%, 25.4%, and 20.2% without using the proposed
performance code metrics.

RQ3. What are the different types of performance bugs
that our approach can predict and fail to predict?

In this RQ, we study the types of performance bugs that our ap-
proach can predict and fail to predict. We find that our approach can
predict various types of performance bugs, including performance
regression bugs, memory leak bugs, infinite loop bugs, deadlock bugs,
and hang bugs. In addition, our approach can predict additional
performance bugs that are not covered by the anti-patterns pro-
posed in the prior studies [25, 38, 68, 71, 93]. On the other hand, we
find that our approach fails to predict performance bugs related to
running time input or system-specific practices.

Paper organization: The rest of the paper is organized as fol-
lows. Section 2 describes the experimental setup, while Section 3
presents our results. We discuss the usages and limitations of our
approach in Section 4. The threats to validate are discussed in
Section 5 and related work in Section 6. Finally, we conclude and
discuss future work in Section 7.

2 EXPERIMENT SETUP
In this section, we introduce the overview of our experimental setup.
As shown in Figure 1, we first collect data from GitHub and identify
performance bugs. Then, we calculate various types of metrics to
capture the characteristics of source code and build performance
bug prediction models.

2.1 Selecting projects
As shown in Figure 1, we first query the project information hosted
on GHTorrent [42–44, 89] to select our projects. Then, we clone
the selected projects from GitHub. We define the following criteria
to select our projects.

Selection Criteria. As Java is one of the most popular program-
ming languages according to programming language popularity
websites (e.g., Tiobe [83], GitHut [40], and PYPL [74]), we restrict
our analysis only to Java projects. Nevertheless, we believe that
our approach can be adapted to other programming languages, as-
suming that the metrics are properly calculated. To avoid working
on personal or toy projects [55], we select 1,697 Java projects that
each has at least 2,000 commits [76]. Next, we apply the following
criteria to further exclude projects from the initial selection:

• In the work by Gousios et al. [41], more than half of the
GitHub projects are forked from others. Therefore, we ex-
clude projects that have been archived [39] or forked.

• We exclude projects that do not have bug reports or areman-
aged by bug tracking systems (e.g., Jira and Bugzilla) [55].

• We filter out projects with a lifespan less than a year, other-
wise we can not have enough performance bug reports and
metrics to build accurate prediction models [94, 95, 99].

• We exclude projects that have limited performance bug
fixing commits. Following the prior studies [95], we count
the number of performance bug fixing commits from a year
period in each project and choose the 75% percentile of the
number of performance bug fixing commits (i.e., 74) as the
threshold to filter out projects.

• We remove projects without performance bug fixing com-
mits in their last six month periods.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Enhancing Performance Bug Prediction Using Performance Code Metrics MSR ’24, April 15–16, 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Download
and classify
bug reports

Select
 projects Projects

GHTorrent

Identify files
with

performance
bugs

Labeled
files with

calculated
metrics

Performance
and non-

performance
bug reports

Calculate
metrics

Buggy files
and clean

 files

Build and evaluate
performance bug
prediction models

Figure 1: The overview of our approach.

After applying the aforementioned criteria, we reduce our projects
to 80. Our projects are from different fields, such as Elasticsearch
search engine [36] OpenLiberty cloud micro-service [51], and so on.
On average, the collected projects have 304,619 source code files
and 34,268,345 lines of code.

2.2 Identifying performance bug fixing commits
As suggested in prior literature [26, 31], we use the performance
bug fixing commits to identify the source code files that contain
performance bugs. We use two methods to identify the commits
that fix performance bugs.

• Searching for commits containing any of the performance-
related keywords (i.e., deadlock, contention, infinite loop,
memory leak, performance, high memory, stuck, hang, slow,
speed up, and 100% CPU) in the commit message.

• Identifying commits fixing bug reports that contain the
performance-related keywords.

For each project, we include the performance bug fixing commits
in the latest history year of the project. We filter out performance
bug fixing commits by keeping only the commits that have source
code changes, i.e., changes to *.java files. After filtering, there is a
median of 175 performance bug fixing commits in each project.

2.3 Identifying the files with performance bugs
For each project, we exclude the test files since we are interested in
studying the implications of performance bugs. A file is considered
as a test file if the filename contains the test keyword.

Figure 2 shows the approach that we use to label the files that
have performance bugs. Following the prior studies [95, 96], we
collect the source code files of each project six months before the
latest commit time in the project. To identify the files that have
performance bugs, we make use of the commits collected in the
previous step. Then, we mark the source code files that are mod-
ified in the performance bug fixing commits as performance bug
files. However, there are performance bug files introduced after the
time we collect the source code files. Therefore, we use SZZ [77]
algorithm to search for the bug introducing commits. We exclude
the buggy files that are introduced after the time that we collect
the source code files.

In our projects, we find that a median ratio of 0.84% files have
performance bugs, which means there is one performance bug in
every 119 files. Performance bugs are not frequent, however, they

caused many severe failures in production and resulted in software
worth hundreds of millions being abandoned [67, 75].

File collection time, i.e, six

months before

the latest commit

The latest

 commit time

Six months before

file collection time

Time

Figure 2: The approach that is used to label the files that have
performance bugs

2.4 Capturing the code characteristics of
performance bugs

In this section, we propose a number of metrics to capture the code
characteristics of performance bugs. The proposed performance
code metrics are shown in Table 1. Below, we explain the rationale
of each performance code metric.

Table 1: The proposed performance codemetrics. Themetrics
are aggregated to a file level using average scheme.

Performance code metric Description
Num_if_in_loop Number of if-conditions that are in-

side loops
Num_loop_in_if Number of loops that are inside if-

conditions
Num_file_operations Number of file operations
Num_file_operations_in_loop Number of file operations inside

loops
Num_database_operations Number of databases operations
Num_database_operations_in
_loop

Number of databases operations in-
side loops

Num_collection Number of operations on collection
data structures

Num_collection_in_loop Number of operations on collection
data structure inside loops

Num_synchronization Number of synchronization opera-
tions

Num_nested_loop Number of nested loops
Num_nested_loop_in_crit Number of nested loops in critical

sections in synchronization
Num_thread Number of thread operations

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MSR ’24, April 15–16, 2024, Lisbon, Portugal Guoliang Zhao, Stefanos Georgiou, Ying Zou, Safwat Hassan, Derek Truong, and Toby Corbin

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Performance bugs with non-intrusive fixes. Nistor et al. [68]
analyze performance bugs that have non-intrusive fixes and find that
each performance bug in the family is associated with a loop and
an if-condition. For example, in the situation that an if-condition
inside a running loop is met and there is no break command to
exit from the loop, the loop continues its execution until an end
condition is met. Such cases result to unnecessary execution and
performance deterioration. To represent the code characteristics
of such performance bugs, we propose the Num_if_in_loop and
Num_loop_in_if metrics (as listed in Table 1) to count the number of
if-conditions in loops and the number of loops in if-conditions. The
rationale is that when loops and if-conditions are heavily nested,
developers are likely to miss exit-conditions to stop the loops.

(a) The performance bug with non-intrusive fix

(b) The fix for the performance bug example

Figure 3: An example of performance bugs that have non-
intrusive fix and its resolution in project Tomcat [84]

Figure 3 shows a performance bug that has non-intrusive fix.
When the if-condition at line 6 is met, the remaining computa-
tions of the loop are unnecessary because there is no point to set
the elExp variable to true again. Such cases result in performance
deterioration. Thus, developers fix the performance by adding a
break statement at line 3 as shown in Figure 3(b). The proposed
performance code metric Num_if_in_loop can help us model such
performance bugs.

Data corruption hang bugs. Dai et al. [25] report that the
data corruption hang bugs can cause infinite loops in software and
make software unavailable to its users, which is among the most
common performance issues [24, 28, 29, 53]. Moreover, data cor-
ruption hang bugs happen when a loop’s exit-condition is affected
by an I/O operation, e.g., reading from a file or database. For ex-
ample, if a file read operation inside a loop is executed and the
file is corrupted, then this can lead to an infinite loop. Therefore,
we propose the Num_file_operations, Num_file_operations_in_loop,
Num_database_operations, and Num_database_operations_in_loop
metrics (as listed in Table 1) to count the number of I/O operations
inside a method and loop. The rationale is that the execution of
a loop is likely to be affected by the I/O operations in the loop or
method.

Figure 4 illustrates a data corruption hang bug in file Benchmark-
Throughput.java [9] of project Hadoop Distributed File System.

Figure 4: An example of data corruption hang perfor-
mance bugs in file BenchmarkThroughput.java [9] of project
Hadoop Distributed File System

The data corruption hang bug is reported in issue #13514 [10]. As
shown in Figure 4, when the BUFFER_SIZE variable at line 84 is
0, the InputStream in at line 87 reads a zero-size byte array and
returns 0. The exit-condition of the while loop at line 86 become
infeasible because size < 0 is never satisfied. The in.read(data)
at line 87 is a file operation. Thus, the proposed performance code
metrics Num_file_operations and Num_file_operations_in_loop can
help us model this data corruption hang bug.

Redundant traversal bugs. Olivo et al. [71] have studied the
redundant traversal bugs that appear when methods repeatedly it-
erate over a data structure, without modifying it after a successive
traversal. Since a data structure is not modified between traversals,
the results from one traversal can be reused and the repeatedly
traversals are a waste of computational resources, which results
in performance degradation. Ghanavati et al. [38] find that inef-
ficient usage of data structures (e.g., not removing stale objects
from data collections) is one of the common root causes of memory
leak bugs. Inspired by the above studies [38, 71], we propose the
Num_collection and Num_collection_in_loop metrics (as listed in
Table 1) to count the number of operations on data structures. The
rationale is that the extensive usage of data structures makes it
challenging for developers to correctly manage them, which can
lead to inefficient usages of data structures [88].

Figure 5: An example of redundant traversal perfor-
mance bugs in file CandlestickRenderer.java [52] of project
JFreeChart

Figure 5 depicts a redundant traversal bug in file Candlestick-
Renderer.java [52] in JFreeChart. The redundant traversal bug is
reported by Olivo et al. [71]. As shown in Figure 5, the drawItem()
method iterates over all points in the dataset (i.e., XYDataset dataset
at line 583) in order to draw a single data point. The drawItem()
method traverses all data points to compute a variable called xxWidth
at line 656. The xxWidth variable records theminimum gap between
adjacent x-coordinates of all points in the dataset. If a dataset is

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Enhancing Performance Bug Prediction Using Performance Code Metrics MSR ’24, April 15–16, 2024, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

not modified between successive calls to the drawItem() method,
the re-computation of xxWidth in each call to the drawItem()
method is unnecessary. The getXValue at line 653 is an operation
on highLowData which is a set object as defined by OHLCDataset
highLowData at line 606. Thus, the proposed performance codemet-
rics Num_collection, Num_collection_in_loop, and Num_if_in_loop
can help us model this redundant traversal bug.

Synchronization performance bugs. Thread synchronization
is defined as a mechanism which ensures that two or more con-
current processes or threads do not simultaneously execute a par-
ticular program segment known as critical section. However, syn-
chronization performance bugs can cause synchronization issues
and degrade the performance of a multi-threaded system. To this
end, Zhang et al. [93] investigate synchronization performance
bugs and find that the nested loops in critical sections are likely to
cause synchronization issues. This is because nested loops are time-
consuming and once a thread enters the critical section and starts to
execute the nested loops, then all other threads have to wait for the
nested loops to finish. Therefore, we propose the Num_nested_loop
and Num_nested_loop_in_crit metrics (as listed in Table 1) to count
the number of nested loops found in methods’ critical sections. In
addition, we propose the Num_synchronization and Num_thread
metrics (as listed in Table 1) to represent the number of synchro-
nization operations (e.g., acquiring a mutex) and thread operations
(e.g., creating a thread) in a method. The rationale is that a method
is more likely to have synchronization issues if it has more syn-
chronization and thread operations.

Figure 6: An example of synchronization performance bugs
in file JobImpl.java [11] of project Hadoop MapReduce

Figure 6 shows a synchronization bug in file JobImpl.java [11] of
project Hadoop MapReduce. The synchronization bug is reported
in issue #4813. As shown in Figure 6, the handle()method acquires
the writeLock lock at line 999, executes themethod doTransition()
at line 1002, and releases the writeLock lock at line 1019. How-
ever, if the method doTransition() takes too long to finish, some
threads in the system have to wait for the release of the writeLock
lock and the system might become unresponsive to users. The code
conducts synchronization operations (e.g., acquiring and releasing a
lock). Thus, the proposed performance codemetricNum_synchronization
can be used to model such synchronization bug.

The proposed performance code metrics can be calculated via
static source code analysis and require no system specific knowl-
edge. We focus on loops when we propose the performance code
metrics because most computation time is spent inside loops and
most performance bugs involve loops [46, 70, 86, 92].

Prior studies [19, 27, 30] propose metrics to capture the per-
formance regression or improvement introduced by source code

changes. Compared with the metrics proposed in the prior stud-
ies [19, 27, 30], the proposed performance code metrics in our paper
are oriented to capture the code characteristics of performance bugs.
For example, the prior studies [19, 27, 30] count only the number
of loops in a method, while we count (1) the number of loops in
if-conditions, (2) the number of file operations in loops, and (3)
the number of database operations in loops to capture the code
characteristics of data corruption hang bugs [25].

2.5 The code and process metrics
To represent the source code and code change history, we include
the code and process metrics that are widely used in the prior defect
prediction studies [12, 13, 15, 31, 49, 60, 64, 94, 96, 97]. Table 2
summarizes the code and process metrics.

Table 2: The code and process metrics used in our study. The
last column refers to the scheme to aggregate method-level
metrics to a file level ("none means that no aggregation is
performed for metrics that are calculated at a file level").

Code Metrics
Metric
name

Description Aggregation
scheme

LOC Lines of code in a method average
CL Comment lines in a method average
NSTMT Number of statements in a method average
RCC Ratio comments to codes of a

method
average

MNL Max nesting level of a method average
CC McCable cyclomatic complexity of

a method
average

FANIN Number of input data of a method average
FANOUT Number of output data of a method average

Process Metrics
Num_rev Number of revisions None
Num_perf
_rev

Number of revisions a file was in-
volved in fixing performance bugs

None

Num_non
_perf_rev

Number of revisions a file was in-
volved in fixing non-performance
bugs

None

Num_perf
_bug

Number of performance bugs hap-
pened in a file

None

Num_non
_perf_bug

Number of non-performance bugs
happened in a file

None

Added_loc Lines of code added in a file in the
history commits

average

Deleted_loc Lines of code deleted in a file in the
history commits

average

3 EXPERIMENT RESULTS
In this section, we present motivations, approaches, and results of
the studied research questions.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MSR ’24, April 15–16, 2024, Lisbon, Portugal Guoliang Zhao, Stefanos Georgiou, Ying Zou, Safwat Hassan, Derek Truong, and Toby Corbin

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

3.1 RQ1. What is the performance of our
approach in predicting performance bugs at
file level?

To help developers in identifying performance bugs at the develop-
ment phase, we provide a unified approach that can predict various
types of performance bugs. Specifically, we combine the perfor-
mance code metrics with the code and process metrics used in
defect prediction studies [12, 13, 15, 31, 49, 60, 64, 94, 96, 97] to
build models for predicting performance bugs at file level.

Selecting machine learning algorithms. In our experiment,
we select seven machine learning algorithms, i.e., Random Forest
(RF), eXtreme Gradient Boosting (XGBoost), Logistic Regression
(LR), Support Vector Machines (SVM), Complement Naive Bayes
(CNB), MultiLayer Perceptron neural network (MLP), and Decision
Tree (DT), that are widely used to predict bugs [3, 82].

Creating training and testing datasets. In our study, the per-
formance bug prediction models are within-project models. We
apply the out-of-sample bootstrap technique [3, 32, 81, 82] to create
training and testing datasets for each project. The out-of-sample
bootstrap is recommended for highly-skewed datasets [50, 82],
which is the case in performance bug prediction where the num-
ber of the files that have performance bugs is small comparing
with clean files. The out-of-sample bootstrap is composed from two
steps:

• For a project with 𝑁 files, a bootstrap sample of size 𝑁 files
is randomly drawn with replacement from the original files
of the project.

• Amodel is trained and validated using the bootstrap sample
and tested using the files that do not appear in the boot-
strap sample. On average, 36.8% of the files do not appear
in the bootstrap sample, since the sample is drawn with
replacement [32].

We repeat the out-of-sample bootstrap process for 100 times for
each project.

Conducting class re-balancing on the training datasets.
As suggested by the prior study [82], class re-balancing is able to
improve the performance of defect predictionmodels. Following the
prior study [82], we use the SMOTE class re-balancing to balance
the number of files that have performance bugs in our training
datasets.

Performance metrics. We use three metrics to evaluate the
performance of our models, including Area Under the receiver oper-
ator characteristic Curve (AUC), Matthews Correlation Coefficient
(MCC), and Area under the Precision-Recall curve (PR-AUC).

Training and evaluating performance bug prediction mod-
els. To find the best hyper-parameters for our models and the
SMOTE class re-balancing technique, we use the grid search op-
timization approach. The grid search parameter optimization ap-
proach consists of three steps.

• Set candidate values for parameters. We manually in-
put a set of candidate values for every parameter in each
machine learning algorithm and the SMOTE technique.

• Iterate candidate parameter values. We iterate all possi-
ble combinations of candidate parameter values. For each

possible combination, we train models using 80% of the
training dataset and test them on the rest 20%.

• Select the optimal parameter values. After iterating all
the combinations of parameters, we select the ones that
achieves the highest performance.

In a project, for each training and testing datasets that are gener-
ated from the out-of-sample bootstrap process, we train a model on
the training dataset using the optimal parameter values and test the
AUC, PR-AUC, and MCC of the model for predicting performance
bugs in the testing dataset. Since we have seven machine learning
algorithms, 80 projects, and 100 datasets from each project, we build
and test 56,000 (i.e., 7*80*100) models, in total.

Comparing the performance of themodels. After evaluating
the performance of machine learning models on our projects, we
draw beanplots of the AUCs, PR-AUCs, and MCCs to visualize
the performance of the models. Next, we conduct Friedman tests
followed by Nemenyi’s post-hoc tests to compare the performance
of different models. Both Friedman test and Nemenyi’s post-hoc
test are non-parametric tests that do not require the analyzed data
to meet any assumptions [72]. We use 0.01 as the significant level
when applying Friedman tests and Nemenyi’s post-hoc tests.

Table 3: The p-values of the Friedman tests of comparing the
performance of machine learning algorithms

Performance metrics
MCC PR-AUC AUC
5.7e-78 2.0e-137 1.5e-47

Figure 7: The AUC of machine learning (ML) algorithms for
predicting performance bugs at file level. The ML algorithms
are grouped in Gray, Red, and Blue colors based on the results
from Nemenyi’s post-hoc tests.

Results: The Random Forest and eXtreme Gradient Boost-
ing algorithms achieve the best performance in predicting
files with performance bugs. As shown in Table 3, the p-values
of the Friedman tests are all smaller than 0.01, which means that
the performance of the studied machine learning algorithms are
significantly different under all performance metrics. Figures 7, 8,
and 9 show the AUCs, PR-AUCs, and MCCs of the studied algo-
rithms for predicting files that have performance bugs. As shown

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Enhancing Performance Bug Prediction Using Performance Code Metrics MSR ’24, April 15–16, 2024, Lisbon, Portugal

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 8: The PR-AUC of machine learning (ML) algorithms
for predicting performance bugs at file level. The ML algo-
rithms are grouped in Gray, Red, and Blue colors based on
the results from Nemenyi’s post-hoc tests.

Figure 9: The MCC of machine learning (ML) algorithms for
predicting performance bugs at file level. The ML algorithms
are grouped in Gray, Red, and Blue colors based on the results
from Nemenyi’s post-hoc tests.

in Figures 7, 8, and 9, the Random Forest and eXtreme Gradient
Boosting algorithms achieve the best performance with a median
of 0.38 MCC, 0.22 PR-AUC, and 0.84 AUC. The 0.84 median AUC
value (ranges from 0 to 1) suggests that the algorithms achieve a
high quality of performance for distinguishing the files with perfor-
mance bugs from the files without performance bugs. As suggested
by the existing studies [17, 22, 78], the median 0.22 PR-AUC (ranges
from 0 to 1) and 0.38 MCC (ranges from -1 to 1) suggest relatively
mediocre performance. Overall, the Random Forest and eXtreme
Gradient Boosting algorithms achieve acceptable performance for
predicting performance bugs at the file level. One explanation to
the mediocre PR-AUC and MCC values is that the ratio of source
code files that have performance bugs is very low, i.e., 0.84%, in our
studied projects. It is a challenging task to train machine learning
algorithms to predict performance bugs with such a low ratio.

The Complement Naive Bayes and Decision Tree algorithms
have the worst performance for predicting performance bugs. A
possible reason is that the Complement Naive Bayes and Decision

Tree algorithms are not suitable for predicting highly-skewed per-
formance bugs, since there is a very small number of performance
bug files.

Summary of RQ 1

Among the examined algorithms, the Random Forest and
eXtreme Gradient Boosting algorithms achieve the best
performance in predicting performance bugs at file level.

3.2 RQ2. Which group of metrics affect the
performance of our models the most?

To build performance bug prediction models, we use three groups of
metrics including code metrics, process metrics, and the proposed
performance code metrics. To understand whether the proposed
performance code metrics are indeed useful in predicting perfor-
mance bugs, we analyze the effects that each group of metrics has
on the prediction models.

Approach: To test the effect of a group of metrics on the ma-
chine learning models, we apply the effect calculation process as
suggested by the prior study [82]. The calculation of the effect of
each group of metrics on a machine learning algorithm is made of
two steps:

• For each dataset (i.e., the files and their metrics), we first
randomly permute all the values of a group of metrics and
obtain a new dataset.

• Weapply out-of-sample bootstrap process on the new dataset
and conduct the parameter optimization to select the opti-
mal parameter values for the machine learning algorithm.
Next, we evaluate the performance of the machine learn-
ing algorithm for predicting performance bugs on the new
dataset. We compute the differences between the perfor-
mance of the models that are built on the original dataset
and the dataset with the randomly-permuted metrics. The
performance differences are measured in AUC, PR-AUC,
and MCC and are used as the effect of the group of metrics.

We test the effects of all groups of metrics on all studied machine
learning algorithms except the Decision Trees and Complement
Naive Bayes algorithms. We did not include the Decision Trees and
Complement Naive Bayes algorithms in the metrics effects study
because these two algorithms have poor performance for predicting
performance bugs as discussed in Section 3.1.

Results: The proposed performance code metrics impact
the performance of our models the most. Table 5 shows the
results of Friedman tests followed by Nemenyi’s post-hoc tests of
comparing the effects of the groups of metrics. As shown in Table 5,
the proposed performance code metrics are consistently ranked
in the best performing group (i.e., first group). Table 4 shows the
effect that each group of metrics has on the five studied machine
learning algorithms, measured in AUC, PR-AUC, and MCC. As
shown in Table 4, the proposed performance code metrics have the
highest effects for our models. For example, building a Random
Forest model without the proposed performance code metrics can
reduce the model’s median AUC, PR-AUC, and MCC by 7.0%, 27.2%,
and 19.0%, respectively.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MSR ’24, April 15–16, 2024, Lisbon, Portugal Guoliang Zhao, Stefanos Georgiou, Ying Zou, Safwat Hassan, Derek Truong, and Toby Corbin

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: The effects of groups of metrics on performance bug
predictionmodels. We highlight the highest effects of groups
of metrics in each algorithm.

Groups of metrics Median of performance drop percentage
RF XGB LR MLP SVM

Performance
code

metrics

MCC 19.0% 18.5% 20.3% 20.0% 13.2%
PR-AUC 27.2% 24.7% 13.3% 23.2% 14.3%
AUC 7.0% 6.9% 9.2% 11.2% 5.5%

Code
metrics

MCC 5.9% 4.3% 3.1% 5.7% 4.1%
PR-AUC 10.0% 10.4% 7.9% 0.1% 6.6%
AUC 6.2% 6.7% 1.4% 0.1% 0.2%

Process
metrics

MCC 7.8% 4.4% 14.2% 2.7% 18.0%
PR-AUC 11.9% 8.1% 17.7% 10.6% 22.7%
AUC 1.3% 1.2% 2.7% 1.9% 3.0%

Table 5: The classified groups based on the results from Ne-
menyi’s post-hoc tests

Performance
metrics

Groups assigned based on the results from
Nemenyi’s post-hoc tests

First group Second group Third group

MCC
Performance

code
metrics

Process
metrics

Code
metrics

PR-AUC
Performance

code
metrics

Process
metrics

Code
metrics

AUC
Performance

code
metrics

Code
metrics

Process
metrics

Summary of RQ 2

The proposed performance code metrics impact the per-
formance of our prediction models the most. Specifically,
the AUC, PR-AUC, and MCC of the five studied machine
learning models drop a median of 7.7%, 25.4%, and 20.2%
without using the proposed performance code metrics.

3.3 RQ3. What are the different types of
performance bugs that our approach can
predict and fail to predict?

To understand the types of performance bugs that our approach
can predict, we analyze the performance bugs predicted by our
approach.

Collecting performance bugs predicted by our approach.
First, we build Random Forest models using its optimal parame-
ters values and training datasets selected in the experiments in
Section 3.1. Then, we use the Random Forest models to predict
files that have performance bugs in the testing datasets from the
80 experiment projects. Random Forest model predicts the prob-
abilities of files to have performance bugs and we use 0.5 as the
threshold to convert the probabilities to labels (i.e., clean files and
files containing performance bugs). To the end, we find that 31,556
files are predicted to have performance bugs in the testing datasets
from the 80 experiment projects.

Analyzing the predicted performance bugs. To have 95%
confidence level and 5% confidence interval, we randomly select a
sample of 340 predicted to have performance bugs. Next, we find
the performance bug fixing commits for fixing the performance
bugs in the sampled files. Then, the first and second authors of the
paper manually go through the files and performance bug fixing
commits to study the types of the performance bugs. We compare
the results from the two authors and obtain a 0.85 Cohen’s Kappa
score (i.e., a almost perfect agreement between two authors [62]).

Table 6: The result of the manual analysis about the types of
performance bugs predicted by our approach

Types of performance
bugs

Number of files Percentage of files

Performance regression
bug

236 69.4%

Memory leak bug 26 7.6%
Infinite loop bug 23 6.8%
Deadlock bug 21 6.2%
Stuck/hang bug 21 6.2%

Non-performance bug 13 3.8%

Results: Our approach can predict various types of perfor-
mance bugs. The result of the manual analysis is shown in Table 6.
Our approach predicts performance regression bugs (i.e., code that
introduces response time degradation and increases resource uti-
lization [18]), memory leak bugs, infinite loop bugs, deadlock bugs,
and hang bugs. As shown in Table 6, 236 (i.e., 236/340 = 69.4%)
files contain inefficient code that results in performance regression
bugs. For example, file PublicationTransportHandler.java [35] in
project Elasticsearch causes significant system response time degra-
dation and is predicted to have performance bugs by our approach.
The performance regression bug is fixed in commit c5315744 [34].
There are 13 (i.e., 236/340 = 3.8%) false positive predictions, i.e.,
non-performance bugs, made by our approach as shown in Table 6.

Our approach can capture more performance bugs than
the prior anti-pattern studies. From analyzing the files that have
memory leak bugs, deadlock bugs, and hang bugs, we find that
our approach can predict additional performance bugs that are not
covered by the anti-patterns proposed in the prior studies [25, 38,
68, 71, 93]. We show examples as follows.

• The predicted buggy file JournaledGroup.java [2] in project
Alluxio contains a memory leak bug. The memory leak bug
is caused by unclosed threats when users iterate directories
(detailed description can be found in commit 58c24eb8 [1]).

• The predicted buggy file ConnectivityService.java [6] in
project platform_frameworks_base contains a deadlock bug.
The deadlock bug is caused by lock acquiring sequences
(detailed description can be found in commit 465088ed [5]).

• The predicted buggy fileAbstractBuilding.java [58] in project
minecolonies has a hang bug that is caused by keeping
searching for objects that do not exist (mentioned in com-
mits 508e7638 [59]).

Our approach is able to predict more performance bugs because
we measure code characteristics that lead to performance bugs
instead of measuring the restricted rules. In addition, we combine

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Enhancing Performance Bug Prediction Using Performance Code Metrics MSR ’24, April 15–16, 2024, Lisbon, Portugal

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

performance code metrics with code and process metrics extracted
from development history to predict performance bugs.

We intend to study the types of performance bugs that our ap-
proach fails to predict. We are also interested in understanding
the root causes of the performance bugs that cannot be predicted
using our approach. Thus, we conduct a manual analysis of the
false negatives (i.e., files with performance bugs that our approach
fails to predict). We select a sample of 340 false negatives using 95%
confidence level and 5% confidence interval from the prediction
results of the Random Forest models.

Table 7: The result of the manual analysis on the types of
performance bugs that our approach fails to predict

Type of
performance bugs

Number
of files

Main root
causes

Performance regression bug 251 Inefficient functional logic,
inefficient memory usage

Memory leak bug 12 Specific program input,
unclosed threats at runtime

Infinite loop bug 18 Specific program input,
wrong API usage

Deadlock bug 13 Database binary storage,
JDK related

Stuck/hang bug 17
Specific program input,
configuration problem,
device incompatibility

Non-performance bug 29 None

We go through the files and performance bug fixing commits to
study the types of the performance bugs and the root causes of the
performance bugs. The result of the manual analysis is shown in
Table 7. We show examples of each root causes as follows.

Inefficient function logic: code contains inefficient algorithms
that introduce unnecessary calculations. The file, namelyMekanism-
RenderType.java in project Mekanism, contains a performance re-
gression bug caused by frequent unnecessary data searches (detailed
description can be found in commit ee83cb14 [63]).

Inefficient memory usage: code holds rarely used objects in
memory. The file, namely AssetFeeView.java in project bisq, con-
tains a performance regression bug caused by building and holding
a not used object (about 40MB) in memory (detailed description
can be found in commit 55b070f9 [16]).

Specific input: performance bugs that happen when specific
data are input. The file, namely ColorExtractor.java in project plat-
form_frameworks_base, contains a stuck bug that happens only
when importing an image as a wallpaper (detailed description can
be found in commit 5abc71b2 [7]). In addition, the file, namely De-
faultSearchContext.java, in project Elasticsearch contains amemory
leak bug that occurs only when a search query has certain fields en-
abled (detailed description can be found in commit 6b51d85c [33]).

Wrong API usage: performance bugs that are caused by wrong
API usages. The file, namely LayoutUtil.java in project webfx, con-
tains an infinite loop bug that is caused by the mixing usage of
two API methods (detailed description can be found in commit
c241aa13 [85]).

Device incompatibility: performance bugs that happen be-
cause of the environment on specific devices. The file, namely

BiometricsEnrollEnrolling.java in project platform_packages_apps
_settings, contains a stuck bug that happens on only fingerprint
devices (detailed description can be found in commit aea1bdec [8]).

Database binary storage operations: performance bugs that
are caused by wrong usages of database operations APIs. The file,
namely BinaryStorageEntity.java in project hapi-fhir, contains a
deadlock bug that happens when the database binary storage is
used (detailed description can be found in commit c6777578 [48]).

JDK related: performance bugs that are caused by JDK issues.
The file, namely DirtyPrintStreamDecorator.java in project buck,
contains a deadlock bug when the code is executed using JDK 11
(detailed description can be found in commit 2258ba13 [37]).

Based on the root causes of the false negative performance bugs
shown in Table 7, we find that there are performance bugs that can
only be detected using the information collected from running time
(e.g., testing phase), such as performance bugs caused by specific
input, device incompatibility, and JDK issues. For the performance
bugs caused by other root causes (i.e., inefficient function logic,
inefficient memory usage, wrong API usage, and database binary
storage operations), the code characteristics of the root causes can
be system-specific as different systems have different coding prac-
tices. In the future, we plan to propose system-specific performance
code metrics to measure the code characteristics of inefficient func-
tion logic, inefficient memory usage, wrong API usage, and database
binary storage operations in software systems

Summary of RQ 3

Our approach is able to predict various types of perfor-
mance bugs, while 69.4% predicted bugs are performance
regression bugs. Our approach fails to predict performance
bugs that are related to running time input or system-
specific practices.

4 DISCUSSION
In this section, we discuss the limitations and usage of our approach.

4.1 Limitations of our approach
A limitation of our approach is to predict performance bugs in
new project with limited development history. This is because our
approach relies on the performance bugs history of a project to
train machine learning models in predicting hidden performance
bugs in the same project.

4.2 Usage of our approach
In practice, developers may not have sufficient time to design per-
formance test cases to cover each file or function in a software
system [27]. To this end, developers can use our approach to priori-
tize their testing effort on a small set of source code files that are
predicted to have performance bugs.

As the first step, developers can use our approach to predict
files that have performance bugs. Then, they can introduce per-
formance test cases to test the performance (e.g., execution time,
CPU usages, and memory usages) of files that are considered to
have performance bugs. In addition, developers can use approaches
proposed in the existing studies [19, 30] to test the performance.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MSR ’24, April 15–16, 2024, Lisbon, Portugal Guoliang Zhao, Stefanos Georgiou, Ying Zou, Safwat Hassan, Derek Truong, and Toby Corbin

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Chen et al. [19] propose an approach to predict which test cases
are likely to manifest performance regression in a commit and
Ding et al. [30] propose an approach to predict whether a function
test case is able to demonstrate the performance improvement after
fixing a performance bug. Developers can use the approach pro-
posed by Chen et al. [19] to select the existing test cases that can
manifest the performance regression in the files. After fixing the
performance bugs, developers can use the approach proposed by
Ding et al. [30] to identify the test cases that can demonstrate the
performance improvement.

5 THREATS TO VALIDITY
Threats to external validity are related to the generalizability
of our results. To ensure the generalizability of our study, we con-
duct experiments on 80 popular Java projects. The 80 Java projects
are selected following the criteria described in Section 2.1. These
projects belong to different domains. We believe that our approach
can be adapted to other projects (e.g., projects developed in differ-
ent programming languages or projects using Jira issue tracking
systems), assuming that the metrics are properly calculated.

A limitation of our approach is to predict performance bugs in
new project with limited development history. This is because our
approach relies on the performance bugs history of a project to
train machine learning models in predicting hidden performance
bugs in the same project.

Threats to internal validity concern factors out of our control
that may affect the experiment results. We use keyword searching
to identify the performance bug reports and the performance bug
fixing commits following the prior studies. However, there might be
false positive performance bug reports and performance bug fixing
commits in our dataset. To mitigate this issue, we manually labelled
a random statistical sample to ensure that our results does not have
many false positives.

Similarly, the keyword test is applied to filter out test files. How-
ever, there may be test files within our dataset that do not contain
the keyword test, such as the BenchmarkThroughput.java file shown
in Figure 4.

6 RELATEDWORK
In this section, we discuss prior studies that aim to predict perfor-
mance bugs using software testing and source code analysis.

6.1 Predicting performance bugs via software
testing

Grechanik et al. [45] propose a solution for automatically identify-
ing performance problems in applications using black-box software
testing. Jovic et al. [54] introduce an approach that can identify
performance bugs in an application by monitoring the behavior
of the application from different deployments (e.g., application de-
ployed on machines with different size of memory). Xiao et al. [86]
suggest an approach to detect workload-dependent loops that con-
tain time-consuming operations via monitoring the behavior of
applications under large workloads. Nistor et al. [70] introduce an
automated approach that reports code loops whose computations
are repetitive and unnecessary. Killian et al. [56] propose an ap-
proach to predict latent performance bugs by combining state-space

exploration with time-based event simulation. Xu et al. [87] intro-
duce a technique that summarizes the run-time activity in terms
of data copies and identifies unnecessary operations in software
systems. Coppa et al. [23] present a method for helping developers
to discover hidden inefficiencies in source code. Altman et al. [4]
present a tool to abstract the concrete execution states of Java ap-
plications and diagnose the root cause of idle time in applications.
Han et al. [47] propose an approach that mines call-stack traces
to debug the performance problems in order to identify perfor-
mance bugs. Pradel et al. [73] present a performance regression
testing technique to test the performance of thread-safe classes. The
aforementioned studies predict performance bugs on running appli-
cations and analyzing their run-time information (e.g., call-stack).
In contrast to the aforementioned studies, our approach leverages
different source of data, i.e., source code and post-release historical
information, to predict performance bugs.

Laaber et al. [57] propose an approach to predict the stability of
a performance benchmark testing using statically-computed source
code features without running the benchmark testing. Different
from the existing approach [57], our approach aims to predict the
performance bugs in software systems without executing any test
cases. Oliveira et al. [27] propose an approach to predict if a new
commit affects the performance of a benchmark using the run-time
monitoring information collected from running the same bench-
mark from previous commits. Chen et al. [19] propose prediction
models to select the test cases that can manifest the performance re-
gression in a commit. Ding et al. [30] propose an approach to predict
the test cases that can demonstrate the performance improvement
after fixing a performance bug. These approaches [19, 27, 30] aim
to identify test cases that can manifest the existence of performance
bugs in software systems. The identified test cases do not reveal
the exact locations of performance bugs. Unlike the existing stud-
ies [19, 27, 30], our approach aims to identify the locations (e.g.,
files) of the performance bugs in software systems using static
source code analysis.

6.2 Predicting performance bugs via source
code analysis

To predict performance bugs, Jin et al. [53] use efficiency rules (e.g.,
function f1 is always followed by f2) that are extracted from the
fixes of 109 performance bugs. Specifically, the authors find 332
previously unknown performance bugs in MySQL, Apache, and
Mozilla applications. They identify 219 out of 332 performance
bugs by applying the extracted efficiency rules across applications.
Zhang et al. [93] propose a tool to predict synchronization perfor-
mance bugs based on common anti-patterns of synchronization
performance bugs. Chen et al. [20] propose an automated frame-
work to predict performance anti-patterns in Object-Relational
Mapping by analyzing global call graphs and data graphs. Nis-
tor et al. [68] predict performance bugs that can be fixed by adding
one line of code inside a loop. Song et al. [79] design a root-cause
and fix-strategy taxonomy for inefficient loops and, then, propose a
static analysis approach to automatically predict whether a loop is
inefficient based on the proposed taxonomy. Dai et al. [25] propose
Dscope, a tool to predict data-corruption related performance bugs.
Dscope analyzes I/O operations and loops in software packages

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Enhancing Performance Bug Prediction Using Performance Code Metrics MSR ’24, April 15–16, 2024, Lisbon, Portugal

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

and identifies loops whose exit-conditions can be affected by I/O
operations. Xu et al. [88] propose a tool to find problematic uses
of data structures by identifying the objects that are added to col-
lections. Similarly, Bhattacharya et al. [14] present an algorithm
that can predict the excessive generation of temporary data struc-
tures within a loop by determining which objects created within
the loop can be reused. Olivo et al. [71] introduce a tool to iden-
tify redundant traversal performance bugs, i.e., a collection of data
structures is repeatedly iterated but the collection has not been
modified between successive traversals.

The aforementioned studies use anti-patterns to predict perfor-
mance bugs. However, each type of performance bugs has a unique
anti-pattern and requires a different approach to identify it. Adopt-
ing a different approach to predict each type of performance bug
is time-consuming. Compared to the aforementioned studies, we
combine performance code metrics with code and process metrics
used in defect prediction to predict performance bugs.

7 CONCLUSIONS
In this paper, we present an approach that predicts performance
bugs in software systems by integrating source code analysis and
mining code change history. We propose performance code metrics
to capture the code characteristics of performance bugs. Models
are built to predict performance bugs using code, process, and
performance code metrics. We conduct extensive experiments on
80 Java projects to evaluate the performance of seven machine
learning algorithms for predicting performance bugs.

Overall, the contributions of this paper are listed as follow:
• We propose performance code metrics to measure charac-

teristics of poor performance code instead of measuring
restricted performance anti-patterns [25, 38, 68, 71, 93].

• We propose a unified approach that can predict various
types of performance bugs by combining our proposed
performance code metrics with code metrics and process
metrics used in prior defect prediction studies [12, 13, 15,
31, 49, 60, 64, 94, 96, 97].

We provide a replication package1 of our approach. The repli-
cation package includes a list of our experiment GitHub projects
along with their versions, the experiment dataset, the metrics calcu-
lation scripts, and the experiment scripts to replicate our study. In
the future, we will extend our dataset to include more projects with
the newest versions of the studied projects. We intend to report the
predicted files with the performance bugs to the developers and
ask developers’ feedback on the performance of our approach in
order to further improve our approach. In addition, we plan to study
the evolution of performance bugs in software systems over time
and test the performance of our approach over different software
versions.

REFERENCES
[1] Alluxio. [n. d.]. Commit 58c24eb8 in project alluxio. Retrieved

December 02, 2021 from https://github.com/Alluxio/alluxio/commit/
58c24eb80baca6c2f4efbb9fb7349fd80c1d3c0a

[2] Alluxio. [n. d.]. JournaledGroup.java in project alluxio. Retrieved December 02,
2021 from https://github.com/Alluxio/alluxio/blob/master/core/server/common/
src/main/java/alluxio/master/journal/JournaledGroup.java

1https://github.com/NintyFive/MSR2024-Replication-Package

[3] Douglas G Altman, Berthold Lausen, Willi Sauerbrei, and Martin Schumacher.
1994. Dangers of using “optimal” cutpoints in the evaluation of prognostic factors.
JNCI: Journal of the National Cancer Institute 86, 11 (1994), 829–835.

[4] Erik Altman, Matthew Arnold, Stephen Fink, and Nick Mitchell. 2010. Per-
formance analysis of idle programs. In Proceedings of the ACM international
conference on Object oriented programming systems languages and applications.
739–753.

[5] Android. [n. d.]. Commit 465088ed in project android_platform_frameworks.
Retrieved December 02, 2021 from https://android.googlesource.com/platform/
frameworks/base/+/465088ed2f4591d08738b2306f213c5149b3484b

[6] Android. [n. d.]. ConnectivityService.java in project an-
droid_platform_frameworks. Retrieved December 02, 2021
from https://android.googlesource.com/platform/frameworks/base/+/
465088ed2f4591d08738b2306f213c5149b3484b/services/core/java/com/android/
server/ConnectivityService.java

[7] Aosp-mirror. [n. d.]. Commit 5abc71b2 in project platform_frameworks_base.
Retrieved May 07, 2022 from https://github.com/aosp-mirror/platform_
frameworks_base/commit/5abc71b27b5cd08148a277a8f378bbb5f4029835

[8] Aosp-mirror. [n. d.]. Commit aea1bdec in project plat-
form_packages_apps_settings. Retrieved May 07, 2022 from
https://github.com/aosp-mirror/platform_packages_apps_settings/commit/
aea1bdec2d20753bbb64b53ac95b347395877493

[9] Apache. [n. d.]. BenchmarkThroughput.java in Hadoop. Retrieved
December 02, 2021 from https://github.com/apache/hadoop/blob/
3427bc1380ab4455a311c1848a83a966996bbc95/hadoop-hdfs-project/hadoop-
hdfs/src/test/java/org/apache/hadoop/hdfs/BenchmarkThroughput.java

[10] Apache. [n. d.]. Issue 13514 in HDFS. Retrieved December 02, 2021 from
https://issues.apache.org/jira/browse/HDFS-13514

[11] Apache. [n. d.]. JobImpl.java in project Hadoop. Retrieved December 02, 2021
from https://github.com/Jerry-Xin/hadoop/blob/master/hadoop-mapreduce-
project/hadoop-mapreduce-client/hadoop-mapreduce-client-app/src/main/
java/org/apache/hadoop/mapreduce/v2/app/job/impl/JobImpl.java

[12] Erik Arisholm, Lionel C Briand, and Eivind B Johannessen. 2010. A systematic and
comprehensive investigation of methods to build and evaluate fault prediction
models. Journal of Systems and Software 83, 1 (2010), 2–17.

[13] Alberto Bacchelli, Marco D’Ambros, andMichele Lanza. 2010. Are popular classes
more defect prone?. In International Conference on Fundamental Approaches to
Software Engineering. Springer, 59–73.

[14] Suparna Bhattacharya, Mangala Gowri Nanda, Kanchi Gopinath, and Manish
Gupta. 2011. Reuse, recycle to de-bloat software. In European Conference on
Object-Oriented Programming. Springer, 408–432.

[15] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’t touch my code! Examining the effects of
ownership on software quality. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software engineering.
4–14.

[16] Bisq-network. [n. d.]. Commit 55b070f9 in project bisq. Re-
trieved May 07, 2022 from https://github.com/bisq-network/bisq/commit/
55b070f9556977aa6ec4ebf878498a03b44f2f0

[17] Kendrick Boyd, Vitor Santos Costa, Jesse Davis, and C David Page. 2012. Un-
achievable region in precision-recall space and its effect on empirical evaluation.
In Proceedings of the... International Conference on Machine Learning. International
Conference on Machine Learning, Vol. 2012. NIH Public Access, 349.

[18] Jinfu Chen and Weiyi Shang. 2017. An exploratory study of performance regres-
sion introducing code changes. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 341–352.

[19] Jinfu Chen, Weiyi Shang, and Emad Shihab. 2020. PerfJIT: Test-level just-in-time
prediction for performance regression introducing commits. IEEE Transactions
on Software Engineering (2020).

[20] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan, Mohamed
Nasser, and Parminder Flora. 2014. Detecting performance anti-patterns for
applications developed using object-relational mapping. In Proceedings of the
36th International Conference on Software Engineering. 1001–1012.

[21] Yiqun Chen, Stefan Winter, and Neeraj Suri. 2019. Inferring Performance Bug
Patterns from Developer Commits. In 2019 IEEE 30th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 70–81.

[22] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC genomics 21, 1 (2020), 1–13.

[23] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-sensitive
profiling. ACM SIGPLAN Notices 47, 6 (2012), 89–98.

[24] Ting Dai, Daniel Dean, Peipei Wang, Xiaohui Gu, and Shan Lu. 2018. Hytrace:
a hybrid approach to performance bug diagnosis in production cloud infras-
tructures. IEEE Transactions on Parallel and Distributed Systems 30, 1 (2018),
107–118.

[25] Ting Dai, Jingzhu He, Xiaohui Gu, Shan Lu, and Peipei Wang. 2018. Dscope:
Detecting real-world data corruption hang bugs in cloud server systems. In
Proceedings of the ACM Symposium on Cloud Computing. 313–325.

11

https://github.com/Alluxio/alluxio/commit/58c24eb80baca6c2f4efbb9fb7349fd80c1d3c0a
https://github.com/Alluxio/alluxio/commit/58c24eb80baca6c2f4efbb9fb7349fd80c1d3c0a
https://github.com/Alluxio/alluxio/blob/master/core/server/common/src/main/java/alluxio/master/journal/JournaledGroup.java
https://github.com/Alluxio/alluxio/blob/master/core/server/common/src/main/java/alluxio/master/journal/JournaledGroup.java
https://github.com/NintyFive/MSR2024-Replication-Package
https://android.googlesource.com/platform/frameworks/base/+/465088ed2f4591d08738b2306f213c5149b3484b
https://android.googlesource.com/platform/frameworks/base/+/465088ed2f4591d08738b2306f213c5149b3484b
https://android.googlesource.com/platform/frameworks/base/+/465088ed2f4591d08738b2306f213c5149b3484b/services/core/java/com/android/server/ConnectivityService.java
https://android.googlesource.com/platform/frameworks/base/+/465088ed2f4591d08738b2306f213c5149b3484b/services/core/java/com/android/server/ConnectivityService.java
https://android.googlesource.com/platform/frameworks/base/+/465088ed2f4591d08738b2306f213c5149b3484b/services/core/java/com/android/server/ConnectivityService.java
https://github.com/aosp-mirror/platform_frameworks_base/commit/5abc71b27b5cd08148a277a8f378bbb5f4029835
https://github.com/aosp-mirror/platform_frameworks_base/commit/5abc71b27b5cd08148a277a8f378bbb5f4029835
https://github.com/aosp-mirror/platform_packages_apps_settings/commit/aea1bdec2d20753bbb64b53ac95b347395877493
https://github.com/aosp-mirror/platform_packages_apps_settings/commit/aea1bdec2d20753bbb64b53ac95b347395877493
https://github.com/apache/hadoop/blob/3427bc1380ab4455a311c1848a83a966996bbc95/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/BenchmarkThroughput.java
https://github.com/apache/hadoop/blob/3427bc1380ab4455a311c1848a83a966996bbc95/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/BenchmarkThroughput.java
https://github.com/apache/hadoop/blob/3427bc1380ab4455a311c1848a83a966996bbc95/hadoop-hdfs-project/hadoop-hdfs/src/test/java/org/apache/hadoop/hdfs/BenchmarkThroughput.java
https://issues.apache.org/jira/browse/HDFS-13514
https://github.com/Jerry-Xin/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-app/src/main/java/org/apache/hadoop/mapreduce/v2/app/job/impl/JobImpl.java
https://github.com/Jerry-Xin/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-app/src/main/java/org/apache/hadoop/mapreduce/v2/app/job/impl/JobImpl.java
https://github.com/Jerry-Xin/hadoop/blob/master/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-app/src/main/java/org/apache/hadoop/mapreduce/v2/app/job/impl/JobImpl.java
https://github.com/bisq-network/bisq/commit/55b070f9556977aa6ec4ebf878498a03b44f2f0
https://github.com/bisq-network/bisq/commit/55b070f9556977aa6ec4ebf878498a03b44f2f0

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

MSR ’24, April 15–16, 2024, Lisbon, Portugal Guoliang Zhao, Stefanos Georgiou, Ying Zou, Safwat Hassan, Derek Truong, and Toby Corbin

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[26] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2010. An extensive
comparison of bug prediction approaches. In 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010). IEEE, 31–41.

[27] Augusto Born De Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias
Hauswirth, and Peter F Sweeney. 2017. Perphecy: performance regression test
selection made simple but effective. In 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, 103–113.

[28] Daniel J Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang, Junghwan Rhee, Nipun
Arora, and Geoff Jiang. 2014. Perfscope: Practical online server performance bug
inference in production cloud computing infrastructures. In Proceedings of the
ACM Symposium on Cloud Computing. 1–13.

[29] Daniel J Dean, Peipei Wang, Xiaohui Gu, William Enck, and Guoliang Jin. 2015.
Automatic server hang bug diagnosis: Feasible reality or pipe dream?. In 2015
IEEE International Conference on Autonomic Computing. IEEE, 127–132.

[30] Zishuo Ding, Jinfu Chen, and Weiyi Shang. 2020. Towards the Use of the Readily
Available Tests from the Release Pipeline as Performance Tests. Are We There
Yet?. In 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 1435–1446.

[31] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2012. Evaluating defect
prediction approaches: a benchmark and an extensive comparison. Empirical
Software Engineering 17, 4-5 (2012), 531–577.

[32] Bradley Efron. 1983. Estimating the error rate of a prediction rule: improvement
on cross-validation. Journal of the American statistical association 78, 382 (1983),
316–331.

[33] Elastic. [n. d.]. Commit 6b51d85c in project Elasticsearch. Re-
trieved May 07, 2022 from https://github.com/elastic/elasticsearch/commit/
6b51d85cbde8e0ddea020dcccb1e798dcb4ef27a

[34] Elastic. [n. d.]. Commit c5315744 in project elasticsearch. Re-
trieved December 02, 2021 from https://github.com/elastic/elasticsearch/commit/
c531574407c5547fc742b168f61c03fd00b0c530

[35] Elastic. [n. d.]. PublicationTransportHandler.java in project elasticsearch.
Retrieved December 02, 2021 from https://github.com/elastic/elasticsearch/
blob/master/server/src/main/java/org/elasticsearch/cluster/coordination/
PublicationTransportHandler.java

[36] ElasticSearch. [n. d.]. Elasticsearch Reference. Retrieved January 21, 2021 from
https://www.elastic.co/

[37] Facebook. [n. d.]. Commit 2258ba13 in project buck. Retrieved
May 07, 2022 from https://github.com/facebook/buck/pull/2553/commits/
2258ba13d8c4ed7bce41975571609a05c3939bba

[38] Mohammadreza Ghanavati, Diego Costa, Janos Seboek, David Lo, and Artur
Andrzejak. 2020. Memory and resource leak defects and their repairs in Java
projects. Empirical Software Engineering 25, 1 (2020), 678–718.

[39] GitHub. [n. d.]. Archiving repositories on GitHub. Retrieved December 02, 2021
from https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-
and-archiving-repositories/about-archiving-repositories

[40] GitHut. [n. d.]. Top Active Programming Languages by GitHut. Retrieved
December 02, 2021 from https://githut.info/

[41] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 345–355.

[42] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from
a firehose. In 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). IEEE, 12–21.

[43] Georgios Gousios and Diomidis Spinellis. 2017. Mining software engineering
data from GitHub. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). IEEE, 501–502.

[44] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman.
2014. Lean GHTorrent: GitHub data on demand. In Proceedings of the 11th
working conference on mining software repositories. 384–387.

[45] Mark Grechanik, Chen Fu, and Qing Xie. 2012. Automatically finding perfor-
mance problems with feedback-directed learning software testing. In 2012 34th
International Conference on Software Engineering (ICSE). IEEE, 156–166.

[46] Sumit Gulwani, Krishna KMehra, and Trishul Chilimbi. 2009. SPEED: precise and
efficient static estimation of program computational complexity. ACM Sigplan
Notices 44, 1 (2009), 127–139.

[47] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. 2012. Perfor-
mance debugging in the large via mining millions of stack traces. In 2012 34th
International Conference on Software Engineering (ICSE). IEEE, 145–155.

[48] Hapifhir. [n. d.]. Commit c6777578 in project hapi-fhir. Re-
trieved May 07, 2022 from https://github.com/hapifhir/hapi-fhir/commit/
c6777578a8b96eb5d9ea38bd280c40b8ca527e62

[49] Ahmed E Hassan. 2009. Predicting faults using the complexity of code changes.
In 2009 IEEE 31st international conference on software engineering. IEEE, 78–88.

[50] Steffen Herbold. 2017. Comments on ScottKnottESD in response to" An empirical
comparison of model validation techniques for defect prediction models". IEEE
Transactions on Software Engineering 43, 11 (2017), 1091–1094.

[51] IBM. [n. d.]. OpenLiberty Reference. Retrieved January 21, 2021 from https:
//openliberty.io/

[52] Jfree. [n. d.]. CandlestickRenderer.java in Jfreechart. Retrieved December 02,
2021 from https://github.com/jfree/jfreechart/blob/master/src/main/java/org/
jfree/chart/renderer/xy/CandlestickRenderer.java

[53] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and detecting real-world performance bugs. ACM SIGPLAN
Notices 47, 6 (2012), 77–88.

[54] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. 2011. Catch me if you
can: performance bug detection in the wild. In Proceedings of the 2011 ACM
international conference on Object oriented programming systems languages and
applications. 155–170.

[55] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of the 11th working conference on mining software repositories.
ACM, 92–101.

[56] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, JamesWAnderson,
and Ranjit Jhala. 2010. Finding latent performance bugs in systems implementa-
tions. In Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering. 17–26.

[57] Christoph Laaber, Mikael Basmaci, and Pasquale Salza. 2021. Predicting unstable
software benchmarks using static source code features. Empirical Software
Engineering 26, 6 (2021), 1–53.

[58] Let’s Dev Together (LDT). [n. d.]. AbstractBuilding.java in project mine-
colonies. Retrieved December 02, 2021 from https://github.com/ldtteam/
minecolonies/blob/version/main/src/main/java/com/minecolonies/coremod/
colony/buildings/AbstractBuilding.java

[59] Let’s Dev Together (LDT). [n. d.]. Commit 508e7638 in project minecolonies.
Retrieved December 02, 2021 from https://github.com/ldtteam/minecolonies/
pull/6076/commits/508e763806951d74f4e8c2cafc87490d3a6d0ada

[60] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. 2008.
Benchmarking classification models for software defect prediction: A proposed
framework and novel findings. IEEE Transactions on Software Engineering 34, 4
(2008), 485–496.

[61] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and detect-
ing performance bugs for smartphone applications. In Proceedings of the 36th
international conference on software engineering. 1013–1024.

[62] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica 22, 3 (2012), 276–282.

[63] Mekanism. [n. d.]. Commit ee83cb14 in project Mekanism. Re-
trieved May 07, 2022 from https://github.com/mekanism/Mekanism/commit/
ee83cb142fc4c341750300a0e651cf79058a652b

[64] Tim Menzies, Jeremy Greenwald, and Art Frank. 2006. Data mining static code
attributes to learn defect predictors. IEEE transactions on software engineering
33, 1 (2006), 2–13.

[65] Domas Mituzas. 2009. Embarrassment. Blog post: Embarrassment (2009).
[66] I MOLYNEAUX. 2009. The Art of Application Performance Testing: Help for

Programmers and Quality Assurance.
[67] Glen Emerson Morris. 2004. “Lessons from the Colorado benefits management

system disaster. Advertising and Marketing Review (2004).
[68] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. 2015. Caramel:

Detecting and fixing performance problems that have non-intrusive fixes. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 902–912.

[69] Adrian Nistor, Tian Jiang, and Lin Tan. 2013. Discovering, reporting, and fixing
performance bugs. In 2013 10th working conference on mining software repositories
(MSR). IEEE, 237–246.

[70] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. 2013. Toddler: De-
tecting performance problems via similar memory-access patterns. In 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 562–571.

[71] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Static detection of asymptotic per-
formance bugs in collection traversals. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 369–378.

[72] Thorsten Pohlert. 2014. The pairwisemultiple comparison of mean ranks package
(PMCMR). R package 27, 2019 (2014), 9.

[73] Michael Pradel, Markus Huggler, and Thomas R Gross. 2014. Performance
regression testing of concurrent classes. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis. 13–25.

[74] PYPL. [n. d.]. Popularity of Programming Language. Retrieved December 02,
2021 from https://pypl.github.io/PYPL.html

[75] Tim Richardson. 1901. census site still down after six months,” 2002.
[76] Leif Singer and Kurt Schneider. 2012. It was a bit of a race: Gamification of

version control. In 2012 Second International Workshop on Games and Software
Engineering: Realizing User Engagement with Game Engineering Techniques (GAS).
IEEE, 5–8.

[77] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do
changes induce fixes? ACM sigsoft software engineering notes 30, 4 (2005), 1–5.

[78] Helen R Sofaer, Jennifer A Hoeting, and Catherine S Jarnevich. 2019. The area
under the precision-recall curve as a performance metric for rare binary events.
Methods in Ecology and Evolution 10, 4 (2019), 565–577.

12

https://github.com/elastic/elasticsearch/commit/6b51d85cbde8e0ddea020dcccb1e798dcb4ef27a
https://github.com/elastic/elasticsearch/commit/6b51d85cbde8e0ddea020dcccb1e798dcb4ef27a
https://github.com/elastic/elasticsearch/commit/c531574407c5547fc742b168f61c03fd00b0c530
https://github.com/elastic/elasticsearch/commit/c531574407c5547fc742b168f61c03fd00b0c530
https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/cluster/coordination/PublicationTransportHandler.java
https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/cluster/coordination/PublicationTransportHandler.java
https://github.com/elastic/elasticsearch/blob/master/server/src/main/java/org/elasticsearch/cluster/coordination/PublicationTransportHandler.java
https://www.elastic.co/
https://github.com/facebook/buck/pull/2553/commits/2258ba13d8c4ed7bce41975571609a05c3939bba
https://github.com/facebook/buck/pull/2553/commits/2258ba13d8c4ed7bce41975571609a05c3939bba
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/about-archiving-repositories
https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/about-archiving-repositories
https://githut.info/
https://github.com/hapifhir/hapi-fhir/commit/c6777578a8b96eb5d9ea38bd280c40b8ca527e62
https://github.com/hapifhir/hapi-fhir/commit/c6777578a8b96eb5d9ea38bd280c40b8ca527e62
https://openliberty.io/
https://openliberty.io/
https://github.com/jfree/jfreechart/blob/master/src/main/java/org/jfree/chart/renderer/xy/CandlestickRenderer.java
https://github.com/jfree/jfreechart/blob/master/src/main/java/org/jfree/chart/renderer/xy/CandlestickRenderer.java
https://github.com/ldtteam/minecolonies/blob/version/main/src/main/java/com/minecolonies/coremod/colony/buildings/AbstractBuilding.java
https://github.com/ldtteam/minecolonies/blob/version/main/src/main/java/com/minecolonies/coremod/colony/buildings/AbstractBuilding.java
https://github.com/ldtteam/minecolonies/blob/version/main/src/main/java/com/minecolonies/coremod/colony/buildings/AbstractBuilding.java
https://github.com/ldtteam/minecolonies/pull/6076/commits/508e763806951d74f4e8c2cafc87490d3a6d0ada
https://github.com/ldtteam/minecolonies/pull/6076/commits/508e763806951d74f4e8c2cafc87490d3a6d0ada
https://github.com/mekanism/Mekanism/commit/ee83cb142fc4c341750300a0e651cf79058a652b
https://github.com/mekanism/Mekanism/commit/ee83cb142fc4c341750300a0e651cf79058a652b
https://pypl.github.io/PYPL.html

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Enhancing Performance Bug Prediction Using Performance Code Metrics MSR ’24, April 15–16, 2024, Lisbon, Portugal

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

[79] Linhai Song and Shan Lu. 2017. Performance diagnosis for inefficient loops.
In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
IEEE, 370–380.

[80] Seyyed Ehsan Salamati Taba, Foutse Khomh, Ying Zou, Ahmed E Hassan, and
Meiyappan Nagappan. 2013. Predicting bugs using antipatterns. In 2013 IEEE
International Conference on Software Maintenance. IEEE, 270–279.

[81] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2016. An empirical comparison of model validation techniques for
defect prediction models. IEEE Transactions on Software Engineering 43, 1 (2016),
1–18.

[82] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2018. The impact of automated parameter optimization on defect
prediction models. IEEE Transactions on Software Engineering 45, 7 (2018), 683–
711.

[83] Tiobe. [n. d.]. TIOBE Index For Popular Programming Languages. Retrieved
December 02, 2021 from https://www.tiobe.com/tiobe-index/

[84] Apache Tomcat. [n. d.]. Apache Tomcat. Retrieved January 15, 2021 from
https://tomcat.apache.org/

[85] Webfx-project. [n. d.]. Commit c241aa13 in project webfx. Re-
trieved May 07, 2022 from https://github.com/webfx-project/webfx/commit/
c241aa134be0f744b213ab4380ff70a25dd25533

[86] Xusheng Xiao, Shi Han, Dongmei Zhang, and Tao Xie. 2013. Context-sensitive
delta inference for identifying workload-dependent performance bottlenecks. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis.
90–100.

[87] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary Sevitsky.
2009. Go with the flow: profiling copies to find runtime bloat. In Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 419–430.

[88] Guoqing Xu and Atanas Rountev. 2010. Detecting inefficiently-used containers to
avoid bloat. In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 160–173.

[89] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommenda-
tion for pull-requests in GitHub: What can we learn from code review and bug

assignment? Information and Software Technology 74 (2016), 204–218.
[90] Shahed Zaman, Bram Adams, and Ahmed E Hassan. 2011. Security versus

performance bugs: a case study on firefox. In Proceedings of the 8th working
conference on mining software repositories. 93–102.

[91] Shahed Zaman, Bram Adams, and Ahmed E Hassan. 2012. A qualitative study
on performance bugs. In 2012 9th IEEE working conference on mining software
repositories (MSR). IEEE, 199–208.

[92] Dmitrijs Zaparanuks and Matthias Hauswirth. 2012. Algorithmic profiling. In
Proceedings of the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation. 67–76.

[93] Chen Zhang, Jiaxin Li, Dongsheng Li, and Xicheng Lu. 2019. Understanding and
Statically Detecting Synchronization Performance Bugs in Distributed Cloud
Systems. IEEE Access 7 (2019), 99123–99135.

[94] Feng Zhang, Ahmed E Hassan, Shane McIntosh, and Ying Zou. 2016. The use
of summation to aggregate software metrics hinders the performance of defect
prediction models. IEEE Transactions on Software Engineering 43, 5 (2016), 476–
491.

[95] Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. 2014. Towards
building a universal defect prediction model. In Proceedings of the 11th Working
Conference on Mining Software Repositories. 182–191.

[96] Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. 2016. Towards
building a universal defect prediction model with rank transformed predictors.
Empirical Software Engineering 21, 5 (2016), 2107–2145.

[97] Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E Hassan. 2016. Cross-project
defect prediction using a connectivity-based unsupervised classifier. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE,
309–320.

[98] Yutong Zhao, Lu Xiao, Xiao Wang, Lei Sun, Bihuan Chen, Yang Liu, and Andre B
Bondi. 2020. How Are Performance Issues Caused and Resolved?-An Empirical
Study from a Design Perspective. In Proceedings of the ACM/SPEC International
Conference on Performance Engineering. 181–192.

[99] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007. Predicting
defects for eclipse. In Third International Workshop on Predictor Models in Software
Engineering (PROMISE’07: ICSE Workshops 2007). IEEE, 9–9.

13

https://www.tiobe.com/tiobe-index/
https://tomcat.apache.org/
https://github.com/webfx-project/webfx/commit/c241aa134be0f744b213ab4380ff70a25dd25533
https://github.com/webfx-project/webfx/commit/c241aa134be0f744b213ab4380ff70a25dd25533

	Abstract
	1 Introduction
	2 Experiment Setup
	2.1 Selecting projects
	2.2 Identifying performance bug fixing commits
	2.3 Identifying the files with performance bugs
	2.4 Capturing the code characteristics of performance bugs
	2.5 The code and process metrics

	3 Experiment Results
	3.1 RQ1. What is the performance of our approach in predicting performance bugs at file level?
	3.2 RQ2. Which group of metrics affect the performance of our models the most?
	3.3 RQ3. What are the different types of performance bugs that our approach can predict and fail to predict?

	4 Discussion
	4.1 Limitations of our approach
	4.2 Usage of our approach

	5 Threats to Validity
	6 Related Work
	6.1 Predicting performance bugs via software testing
	6.2 Predicting performance bugs via source code analysis

	7 Conclusions
	References

