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ABSTRACT
The satisfaction of users is only part of the success of a software
product, since a strong competition can easily detract users from a
software product/service. User churn is the jargon used to denote
when a user changes from a product/service to the one offered
by the competition. In this study, we empirically investigate the
relationship between the issues that are present in a software prod-
uct and user churn. For this purpose, we investigate a new dataset
provided by the alternativeto.net platform. Alternativeto.net has
a unique feature that allows users to recommend alternatives for
a specific software product, which signals the intention to switch
from one software product to another. Through our empirical study,
we observe that (i) the intention to change software is tightly asso-
ciated to the issues that are present in these software; (ii) we can
predict the rate of potential churn using machine learning models;
(iii) the longer the issue takes to be fixed, the higher the chances of
user churn; and (iv) issues within more general software modules
are more likely to be associated with user churn. Our study can
provide more insights on the prioritization of issues that need to
be fixed to proactively minimize the chances of user churn.
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software issues, users churn, software alternatives, deep learning
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1 INTRODUCTION
User satisfaction is essential for the success of software projects [22,
23, 60]. In fact, even when the budget and the schedule of a project
are in control, user dissatisfaction may still lead the project to
failure [43, 76]. Users tend to discuss in public (e.g., public forums)
their preferences and disappointments regarding software, in which
they often mention what made them love or hate a software product
(e.g., by providing ratings and detailed comments). Such data about
user satisfaction has been continuously used by researchers to study
the most important factors to explain user satisfaction. For example,
Panichella et al. [52] identified useful user reviews of mobile apps,
so that developers can improve their apps accordingly (e.g., by
addressing feature requests within such reviews). Other research
works have extracted user feedback [31], and studied the planning
process of future releases based on user reviews [72].

Nevertheless, the success of software projects is not only defined
by the relationship between the software product and its users, but
also by the strengths and weaknesses of competitors. For instance,
studies have shown that a poor user experience may create a point
of no return in which the user is led to the competition or searches
for alternative solutions [62]. In addition, a poor user experience
may create a bad reputation for the software product, which impairs
the adherence of new users [11] (which would likely adhere to the
competitors). Therefore, an important area of study is to unveil the
underlying reasons for losing users to competitors. User churn is
the jargon used to denote when a user decides to change from a
product/service to those offered by the competition.

User churn has been studied extensively in areas other than
software engineering, such as mobile operators and telecommuni-
cation networks [20, 53, 73]. In fact, Wei et al. [73] observed that
the cost of acquiring new users is more expensive than retaining
users. Several services investigate their own user base characteris-
tics to predict user churn. There has also been research targeting
Yahoo Answers [24], StumbleUpon (a web content recommenda-
tion system) [21], Top Eleven - Be A Football Manager (an online
mobile game) [41], Pengyou (a Chinese social network) [37], using
prediction models for predicting user churn.

Although prior research has studied the concerns of users re-
garding software products (including mobile apps), there has been
a lack of empirical research to investigate user churn in the context
of software products. Filling this gap is important to help open
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source and corporate software organizations to retain their users
and improve their probability of success (not to mention the overall
satisfaction of users).

In this paper, we use data obtained from the alternativeto.net1
website, which has a unique feature that allows users to recommend
alternatives for a specific software product. The recommendation
of alternatives can signal the intention to switch from one software
product to another (we provide an example of this scenario in Sec-
tion 2). For the sake of simplicity, we refer to the recommendation
for an alternative software product as simply potential user churn.

By using the alternativeto.net dataset, we formulate an empirical
study to investigate the (i) Web Browsers, (ii) IDEs and (iii) Web
Servers domains on the alternativeto.net website. We first extract
3,556 reviews and 10,081 comments to better understand the overall
concerns of users regarding the software products in the studied
domains. Next, we extract 12,549 recommendations for alterna-
tives by users (i.e., potential user churn) from the Firefox, Eclipse,
and Apache projects. We specifically choose these projects for the
deeper analyses because these projects are established in the Web
Browser, IDE andWeb Server domains, respectively.

To investigate the underlying reasons for the potential user churn
of software products, we pose four research questions that guides
our study:

• RQ0: What are the most significant users’ concerns for Browsers,
IDEs and Web Servers? Understanding users’ concerns will pave
the way to grasp the reasons behind potential user churn. When
discussing the pros and cons of a software product and competi-
tors, users voice varied concerns (e.g., security & privacy issues or
memory issues).
• RQ1: Can we find a correlation between potential user churn and
issue reports? Given that the issues that are present in the studied
projects are the predominant topic in users’ concerns, we study
whether there exists a correlation between the issue reports of a
given software project (i.e., Firefox, Eclipse, and Apache) and the
potential user churn.
• RQ2: Can we use machine learning models to predict the rate of
potential user churn? After correlating issue reports with potential
user churn, we study whether machine learning can be used to
predict the rate of potential user churn (expressed by high or low
user churn). To build our machine learning models, we use latent
features from the issue reports of our studied project.
• RQ3: What are the most important factors related to potential user
churn? given that machine learning models can be used to predict
the rate of potential user churn, we can then extract the most
important features that are associated to the potential user churn.
The reoccurring bugs, the time alive factor, and the issues across
multiple platforms are common factors that are highly associated
with the potential user churn.

The paper is organized as the following, we showcase a motivat-
ing example in Section 2. We describe our data collection process
in Section 3. We delve into our approach and show our obtained
results in Section 4. We discuss the threats to validity in Section 5.
In Section 6, we present the related work. Finally, we conclude the
study in Section 7.

1https:\alternativeto.net

Figure 1: Example of a pdf reader on the alternativeto.net
website.

2 MOTIVATING EXAMPLE
The goal of the alternativeto.net website is to help users to find
software alternatives that can better address the users’ necessities.
For instance, let us consider that a user needs a better .pdf reader
(e.g., the current reader freezes occasionally). The first challenge
occurs because the user is not aware of all the available software
alternatives. In addition, choosing an alternative for a software
is not always simple, since users may be already familiar with a
set of features (from the software in use), which they would not
like to compromise. Considering the .pdf reader example, while
the user wishes a freezing-free alternative, the user may only feel
comfortable to change if the alternative provides the same level of
commenting capabilities (as compared to the reader in use).

With such challenges in mind, the alternativeto.net website was
designed to help users choose the best software alternative for their
needs. Figure 1 shows an example of an initial page of a software
product on alternativeto.net. This initial page provides a description
of the software, features, categories, and tags. The features, cate-
gories and tags are used to organize the software alternatives on
alternativeto.net and can be used to search for software alternatives.
Interesting to note, is the “Alternatives” tab depicted in Figure 1,
which shows all the available alternatives for a software product
(as deemed by the community).

Alternativeto.net allows users to provide reviews for software
alternatives along with ratings (similarly to Google Play, which
allows reviews to be provided for mobile apps). However, what sets
alternativeto.net apart from other platforms is that it allows users to
voice their opinions by placing a software product in perspective to
its competitors. For example, Figure 2 shows the opinions voiced by
users as to whether (and why) Chrome is a good (or bad) alternative
to Firefox.2

As shown in Figure 2, users do not only comment on the prod-
uct being evaluated, but also put the product in perspective to its

2https://alternativeto.net/software/firefox/

2
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Figure 2: https://alternativeto.net provides in-perspective
comments where users specify why a certain software alter-
native (e.g., Firefox) can be better than the current software
(e.g., Chrome)

Figure 3: Recording the recommendation for an alternative
for Firefox

competitors. For example, a user mentions “[Chrome] does not have
as many languages and spell checking support as Firefox does.3”

Because the opinions are voiced with respect to competitors (i.e.,
the in-perspective comments), alternativeto.net provides a unique
opportunity for empirical studies. Particularly in our study, the
in-perspective comments allow us to investigate the most recurrent
concerns within the competition scene of a software domain (we
perform this investigation in RQ0).

Another interesting and unique characteristic in the aterna-
tiveto.net data is the register of users that recommended alternatives
for a given software product (i.e., the potential user churn). For
example, Figure 3 shows how alternativeto.net records when a user
indicates that Chrome can be a good alternative to the Firefox web
browser (along with the reason why). This data is important be-
cause it can be used to proactively identify potential user churn in
software products (e.g., by using machine learning). Based on this
information, we build machine learning models and report on their
results in RQ2 and RQ3.

Finally, the potential user churn provided by alternativeto.net
allow us to investigate whether it is related to prominent issues
that may be present in a software product. For example, while a
user has expressed the reason for a possible user churn in Figure 3
(i.e., Jupyter is slow on Firefox), the development team of Firefox
is also working on an issue report that expresses the same issue
(see Figure 4). In this paper, we hypothesize that there may exist
strong links between potential user churn and the issue reports that
are submitted to software products (we perform this investigation in
RQ1).

3To provide an opinion as to whether a software product is a good or a bad alternative
to another product, users must prove they are not robots. Only afterwards, a text box
containing the submission form will be provided.

Figure 4: Issue report expressing the problem voiced by the
user in Figure 3

We capitalize on these unique characteristics of the alterna-
tiveto.net data to perform our empirical study on the relationship
between potential user churn and software issues.

3 DATA COLLECTION
Alternativeto.net organizes the software alternatives through several
means, such as categories, features, or tags. Categories are the broad-
est way to categorize software alternatives and alternativeto.net has
over 25 categories of software alternatives at the time of this study.
Tags and features are more specific ways to categorize software
alternatives (e.g., the “IDE” tag or the “responsive design” feature).
Another characteristic of tags and features is that they can be added
by users. However, these new tags and features must be verified by
the alternativeto.net community before being added to the website.
For the purposes of our study, we use tags to filter our data for
software alternatives because it is more precise than using cate-
gories. For example, we can easily filter for the software alternatives
within the Web Browser domain using the “web browser” tag. On
the other hand, it would be hard to filter our data based on the
features. For example, filtering by “responsive design” may retrieve
software from very distinct domains.

For the sake of data robustness, it is tempting to analyze all
the software alternatives from all the software domains that are
available on the alternativeto.netwebsite. However, since one of our
main objectives is to study the relationship between potential user
churn and the issues that are present in the software products, we
need to restrict our analyses to the domains of certain software. For
instance, it would be virtually impossible to collect and analyze all
the issue reports from every software alternative listed on the alter-
nativeto.net website. Every different software alternative may use
a different Issue Tracking System, which would require different
ways for collecting data. Therefore, we analyze the software alter-
natives within the domains of three well established open source
projects: Eclipse,4 Firefox,5 and the Apache server.6 Our choice for
these three projects was based on the extensive prior empirical
software engineering research that has been conducted using these
projects over the years [2, 7, 18, 19, 29, 36, 42, 54].

To collect the data for our study, we followed the process de-
picted in Figure 5. Given our chosen studied projects, we collect
all the software alternatives tagged with the “Browser”, “IDE”, and
“Web Server” tags, which are the respective domains of the Eclipse,
Firefox, and Apache projects. In total, we collect 290 browser alter-
natives, 296 IDE alternatives, and 134 web-server alternatives. Once
the software alternatives are fetched, we collect the in-perspective
4https://www.eclipse.org/
5https://www.mozilla.org/en-US/firefox/new/
6https://httpd.apache.org/
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Table 1: A summary of our collected data.

Domain Alternatives Reviews Comments Potential churn Issue reports

IDEs 296 1,088 3,036 4,319 (Eclipse) 22,758 (Eclipse)

Browsers 290 1,754 5,112 6,421 (Firefox) 40,749 (Firefox)

Web Servers 124 714 1,933 1,809 (Apache) 20,965 (Apache)

comments (explained in Section 2) and the reviews for all the soft-
ware alternatives. We also collect the potential user churn (explained
in Section 2) for the Eclipse, Firefox, and Apache projects. Finally, in
addition to the data collected from alternativeto.net, we also collect
the issue reports from the respective Issue Tracking Systems of our
studied projects. We use the potential user churn data combined
with the issue reports to perform our investigations in RQ1-RQ3.
Table 1 summarizes the data collected for our study (i.e., the data
type and the amount of collected data).

4 RESEARCH QUESTIONS & RESULTS
In this section, we present our research questions (RQs) along with
their results. For each RQ, we present its motivation and explain
the approach that is used to conduct the RQ.

RQ0: What are the most significant users’
concerns for Browsers, IDEs and Web Servers?
Motivation: The motivation behind RQ0 is to understand the main
concerns within the competition scene of a specific software do-
main. This investigation is important to highlight what are the
main strengths and weaknesses within a particular domain (e.g.,
Browsers). This knowledge can be useful because, for example, an
organization can study the main weaknesses within a domain and
better assess whether its products/services fall within the same
flaws.
Approach: To study the most significant concerns related to
Browsers, IDEs and Web Servers, we use the in-perspect comments
and reviews data that were explained in Section 3. To analyze such
data, we adopt the Latent Dirichlet Allocation (LDA) to find the
main topics that are present in the in-perspective comments and
reviews data. We use the LDA implementation provided by the
MALLET framework [40]. LDA is a probabilistic generative method
that assumes a Dirichlet distribution of latent topics. LDA is partic-
ular useful for us, since we are interested in finding the main topics
that are present in the in-perspective comments and reviews data.
However, The LDA model requires the data to be pre-processed
in a certain format for optimal results. Therefore, we follow the
standard text pre-processing steps [48]:

Fixing Typographical Errors. Typographical errors can be
due to the usage of internet slang in a written text or simply due to
common language mistakes. The most recurrent of errors that we
find in our data is the repetition of characters. For example, users
tend to use words, such as “beeeest” to emphasize their feelings. We
use the Pattern For Python [63] package to fix such typographical
errors.

Removing Stop Words: Examples of stop words are "of", "by"
and "the". These are words that are recurrently used in written text,
but do not possess meaning by themselves. We use the package

nltk [8] to remove such stop words. This package contains a well-
known corpus of stop words and is widely used for text filtering.

Stemming andLemmatization. For better results, words should
be repeated as frequently as they can, since LDA relies heavily on
the occurrences of words in different sentences. Hence, the usage
of stemming and lemmatization is essential. These methods trans-
form inflectional forms of a word to its basic form. For example,
the words “fixed”, “fixing”, and “fixes” are transformed to the basic
form “fix.” Stemming works by removing the suffix of the word
(e.g., the word “cats” becomes “cat” by removing the “s”), while
lemmatization retrieves the basic form of a word from a dictionary
known as lemma (by using morphological analysis). We use both
stemming and lemmatization to ensure that we obtain the most
unique words possible.

Forming Bigrams and Trigrams. Forming bigrams and tri-
grams is essential to group the words which frequently appear
together. Some words do not inflict any significant meaning for the
LDA model on their own. However, when grouped together, such
words may indicate a specific topic. One example of these words
is “customer support,” which has a precise meaning (as opposed to
only “customer” or “support”, which can hold diverse meanings).

To choose the optimal number of topics in our LDAmodel, we use
the coherence scoremetric [56]. This metric was found to be the best
in alliance with human perception [49, 65]. However, even when
relying on the coherence score (which naturally limits redundancy
in the produced topics), there is still the possibility of duplicate
topics being generated. Therefore, we perform a manual analysis
of the produced topics to eliminate duplicates. Our LDA model
produces topics in the form of keywords and their percentage-
of-significance with respect to the topic. For example, (0.097 ∗
“𝑠𝑜𝑢𝑟𝑐𝑒” + 0.085 ∗ “𝑝𝑟𝑖𝑣𝑎𝑐𝑦” + 0.053 ∗ “𝑡𝑟𝑎𝑐𝑘” + 0.050 ∗ “𝑝𝑟𝑜 𝑓 𝑖𝑡” +
0.038 ∗ “𝑞𝑢𝑎𝑛𝑡𝑢𝑚” + 0.038 ∗ “𝑐𝑜𝑙𝑙𝑒𝑐𝑡” + 0.035 ∗ “𝑝𝑟𝑜𝑡𝑒𝑐𝑡” + 0.032 ∗
“𝑎𝑟𝑐ℎ𝑖𝑣𝑒” + 0.029 ∗ “𝑚𝑜𝑛𝑒𝑦” + 0.026 ∗ “𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒”) are a set of
keywords that indicate Privacy as high level topic. But some other
distribution of keywords could refer to the same topic. Two of the
authors conduct together the manual analyses of the topics. The
final set of topics is only produced when full consensus is reached
between authors (i.e., the authors went over and discussed all the
topics). Because both authors have analyzed together all topics and
agreements were reached on all the topics in the end, we did not
compute inter-rater agreement.

Once the topics are defined, we extract 100 examples (aiming for
a 95% confidence level with a 10% margin error) from our data for
each studied domain (i.e., IDE, Browser, and Web Server), totalling
300 examples. For each example, two of the authors assign their
topic. Again, two authors analyze and discuss each example so
that consensus is reached regarding the assigned topic. Afterwards,
we compute the topic distribution for each domain, which can
represent the most recurrent concerns for that domain.
Findings: Tables 2 and 3 show the topics obtained by our LDA
model.We also show some of the examples for each topic in the table
(all the examples and analyses are available in our replication pack-
age, which is hosted on https://doi.org/10.5281/zenodo.3610584.

Our obtained topics can be categorized into (i) general topics,
which are present in the three domains; and (ii) domain-specific
topics, which might still be present in other domains but are more
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Figure 5: An overview of our data collection process.

dominant in a specific domain. Table 4 shows the distribution of
topics per domain based on our manual analyses. We observe that
release and updates, memory issues, bugs/crashes, and cross-platform
availability can be considered as general topics (i.e., they are im-
portant in all the three analyzed domains). Indeed, these topics are
intuitively present when handling any kind of software.

On the other hand, Documentation and testing were present
for web servers and IDEs, signalling that a robust documentation
(which is often overlooked [55]) and with good support for test-
ing tools may definitely attract/retain more users when competing
in the IDE and Web Sever Market. For example, an organization
may direct their attention to these aspects when studying their
competition.

The bookmarks, privacy, and security were exclusively present in
the Browsers domain, signalling that these are essential features to
retain or attract users. Simplistic design, debug options, code refac-
toring and auto-completion are topics that target IDEs exclusively.

Finally, complaints about release and updates, memory issues and
bugs/crashes can be considered as the main topics that drive users
to churn. These topics were present in the three domains with the
highest percentages among each of the domains. The percentages
combined exceed 50% in each of the domains (see Table 4).
Summary: Our observations suggest that the users’ concerns are
tightly related to issues (e.g., bugs or crashes) that are present in
the respective software products.

RQ1: Can we find a correlation between
potential user churn and issue reports?
Motivation: In RQ0, we observe that software issues (e.g., bugs
& crashes and memory issues) are common concerns that may
motivate users to churn. With such an observation, we hypothesize
in RQ1 that the potential users’churn observed on alternativeto.net
may be correlated with the issue reports which developers address
in their respective projects. This analysis is important because if
such a correlation exists, the potential user churn information can
be possibly used to prioritize issue reports (for example, the more
associated with potential user churn the more important the issue
report).

Approach: In our work, we approach the recommendations for
alternatives (i.e., potential users’churn) and the issue reports as
events occurring over time and interpret them as two time-series.
Such an interpretation is handy for two reasons: (i) we can study
the correlation between two trends (potential users’churn and issue
reports); and (ii) we can study whether the specific peaks in issue
reports can be associated with peaks in potential users’churn.

In our study, we group the two time series in a weekly basis,
i.e., all the potential user churn that occurred within a week are
grouped together. We use the weekly grouping because grouping
issue reports in a daily-basis is too narrow to form a pattern, while
grouping them in a monthly-basis can over-generalize the patterns
in issues. The time-series of potential users’churn and the time-
series of issues showcase the events (grouped in a weekly-basis)
from March 2015 (the earliest date on alternativeto.net) to July 2019,
forming 200 weeks grouping.

The first step to correlated our two time-series is to verifywhether
there exists a global correlation between them (i.e., whether there
exist common patterns among the increasing and decreasing trends
over time). To do so, we use the cross-correlation, which is a metric
used in signal processing [77]. This correlation calculates the simi-
larity between two time-series as a function of the displacement
from one time-series to another. For example, given two functions
𝑓 and 𝑔, the cross-correlation calculates the degree to which a shift
in 𝑔 (along the x-axis) is identical to the shift in 𝑓 .

However, since we are also interested in analyzing the relation-
ship between the peaks of our two time-series, we use the Dynamic
TimeWarping (DTW) [58], which was designed for comparing time-
series varying at different speeds. A peak in potential users’churn
may be followed by a peak in issue reports (or vice-versa), i.e., the
peaks may not necessarily occur at the same time. Differently from
the Eucledian distance, which assumes that a point 𝑖 in a time-series
must be aligned to the 𝑖𝑡ℎ point in another time-series [38, 75], DTW
allows the variance in the offset between two time-series [59] .

To employ DTW, we use the tslearn [68], which is a machine
learning toolkit specialized for time series analysis. The DTW com-
putation produces a matrix that shows the distance between every
two points in the graph of the two time-series. The algorithm is
designed in a way to choose the closest point that respects the
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Table 2: The predominant topics in alternativeto.net

Release and updates
Keywords “𝑣𝑒𝑟𝑠𝑖𝑜𝑛”, “𝑙𝑜𝑛𝑔𝑒𝑟 ”, “𝑟𝑒𝑙𝑒𝑎𝑠𝑒”, “𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑”, “𝑜 𝑓 𝑓 𝑖𝑐𝑖𝑎𝑙”
Examples - The program seems to be no longer updated. Last versions (2018) can be still downloaded from the official website.

- Firefox version 60+ (Quantum) is better than Chrome. Compare to previous versions of Firefox.

Bookmarks Functionality
Keywords “𝑏𝑜𝑜𝑘𝑚𝑎𝑟𝑘”, “𝑝𝑎𝑛𝑒𝑙”, “𝑓 𝑎𝑣𝑜𝑟𝑖𝑡𝑒”, “𝑠𝑢𝑝𝑝𝑜𝑟𝑡”, “𝑠𝑦𝑛𝑐”
Examples - Firefox now allows bookmarks importing from Chrome which is a huge plus.

- With the recent upgrade to 2.0 (including the bookmarks syncing feature that I liked in Firefox), Vivaldi just got better.

Flash support
Keywords “𝑝𝑙𝑢𝑔𝑖𝑛”, “𝑣𝑖𝑑𝑒𝑜”, “𝑖𝑛𝑠𝑡𝑎𝑙𝑙”, “𝑓 𝑙𝑎𝑠ℎ”, “𝑚𝑒𝑑𝑖𝑎 − 𝑝𝑙𝑎𝑦𝑒𝑟 ”
Examples - Since its the only way to watch Flash video on an iPhone without jailbreaking, Skyfire is a killer app thats worth getting for anyone. Playback of Flash video over WiFi is

flawless, and the quality is, at very least, watchable.

Memory issues
Keywords “𝑚𝑒𝑚𝑜𝑟𝑦”, “𝑅𝐴𝑀”, “𝑙𝑎𝑔”, “𝑙𝑖𝑚𝑖𝑡”, “ℎ𝑒𝑎𝑣𝑦”
Examples - Great C++ IDE which balances memory usage and indexing solution. Contains some basic refactoring functions. Good for large projects and limited RAM with remaining

some capabilities of more complex C++ IDEs.
- Eclipse is really lagging after the last update. The memory is filled whenever I run a Java swing applet.
- Chrome is so heavy, it lags alot when I open multiple tabs.

Privacy and security
Keywords “𝑝𝑟𝑖𝑣𝑎𝑐𝑦”, “𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦”, “𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡”, “𝑎𝑙𝑙𝑜𝑤”, “𝑐𝑜𝑛𝑡𝑟𝑜𝑙”
Examples - Firefox allows far more control over your privacy than does Chrome (or even Chromium on which Chrome is based).

- Google Chrome is a great browser and a lot better than Vivaldi Browser. Chrome keeps updating with cool stuff like the new cast feature, better extensions and lot better
privacy and security. Vivaldi has more customizing features, but has a long way to go to compete with Chrome.

Bugs/Crashes
Keywords “𝑐𝑟𝑎𝑠ℎ”, “𝑏𝑢𝑔”, “𝑓 𝑖𝑥”, “𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒”, “𝑖𝑠𝑠𝑢𝑒”
Examples - Lots of users experience Adobe Flash Player hangs or crashes. I dont know why it isnt fixed yet.

If Chrome ever got its proxy support bugs fixed it would leap to the top of the list and become pretty much the only web browser Id ever use.
- I worked with NetBeans for a couple of years and always loved it, but for professional users the yearly fee is well spent: Nicer interface, better Code Intelligence, more
options to fine tune what happens on saving a file (eg. saving or uploading to various locations). You get a couple of feature update each year plus bugfixes, whereas
NetBeans is sometimes very slow to update things (support for new version of a language) or to fix known bugs.

Table 3: The predominant topics in alternativeto.net (continued)

Debug options
Keywords “𝑓 𝑒𝑎𝑡𝑢𝑟𝑒”, “𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡”, “𝑑𝑒𝑏𝑢𝑔”, “𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛”, “𝑝𝑒𝑟 𝑓 𝑒𝑐𝑡”
Examples - Not enough debug and run options; just a text editor, Atom has not got any solid debugging features (and packages) out of the box or at all.

- This is my favorite code editor. It is open source and portable, you can get a portable version that will fit onto a flash drive if youwant. It is just as configurable
as Sublime Text and has a large community producing great plugins. it has GIT support built in and excellent support for Javascript, HTML, CSS, and Python,
and others of course. It has an integrated debugging system.

Simplistic design
Keywords “𝑠𝑖𝑚𝑝𝑙𝑒”, “𝑒𝑑𝑖𝑡𝑜𝑟 ”, “𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡”, “𝑑𝑒𝑠𝑖𝑔𝑛”, “𝑛𝑜𝑡𝑒𝑝𝑎𝑑”
Examples - Really lightweight with some advanced, not complete but easy to use auto complete features. Simple design and customizable.

Cross-platform
Keywords “𝑐𝑟𝑜𝑠𝑠 − 𝑝𝑙𝑎𝑡 𝑓 𝑜𝑟𝑚”, “𝐿𝑖𝑛𝑢𝑥”, “𝑜𝑝𝑒𝑛 − 𝑠𝑜𝑢𝑟𝑐𝑒”, “𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒”, “𝑖𝑛𝑠𝑡𝑎𝑙𝑙”
Examples - Its cross platform and open source and bring the benefits of the JetBrains IDE platform which is well polished and powerful

- One of the best open source browsers that work on Linux and Windows.

Code refactoring and auto-completion
Keywords “𝑐𝑜𝑑𝑒”, “”𝑎𝑢𝑡𝑜 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛”, “𝑟𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟 ”, “𝑜𝑝𝑡𝑖𝑜𝑛”, “𝑢𝑠𝑒”
Examples - For its young age it is well matured and a very powerful IDE with great CMake Support and other goodies like great refactoring tools and a sophisticated

auto-completion system.

Testing
Keywords “𝑡𝑒𝑠𝑡”, “𝑠𝑒𝑟𝑣𝑒𝑟 ”, “𝑑𝑒𝑝𝑙𝑜𝑦”, “𝑤𝑒𝑏𝑠𝑖𝑡𝑒”, “𝑠𝑒𝑡”
Examples - XAMPP is great tool to develop and test your website (particularly if it uses php, and mysql databases) offline before putting it on a live server. You could

also use XAMPP as an easy method of setting up a live server.
- Eclipse is far more superior than netbeans in unit testing functionality.

Documentation
Keywords “𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛”, “𝑠𝑒𝑟𝑣𝑒𝑟 ”, “𝑝𝑜𝑟𝑡”, “𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒”, “𝑓 𝑜𝑟𝑢𝑚”
Examples - Easiest way to run a web server on Windows. The performance is surprisingly good and lots of documentation on how to manage it.

- Support is via forum only. Documentation can be very poor, particularly around product upgrades (one expects more from commercial packages). Due to
their poor documentation, I lost several years of development databases when porting from an old to a new computer (they dont accurately document the
location of the database files).
- Eclipse lacks in adding plugins documentation.

time constraints for continuity and monotonicity. Finally, two co-
authors performed a manual analysis of the observed peaks in the

two time-series.7 The goal of the manual analyses is to find whether
the identified peaks are indeed likely related (e.g., the issue reports

7We share the data of our manual analyses at https://doi.org/10.5281/zenodo.3610584
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Table 4: The extracted topics percentages distribution over
the three domains

Topics Browsers(%) IDEs(%) Web servers(%)
Release and updates 18 17 21
Bookmarks functionality 12 0 0
Memory issues 23 22 11
Privacy and security 8 0 0
Bugs/Crashes 24 19 20
Debug options 0 10 0
Simplistic design 0 8 2
Cross-platform 8 6 5
Code refactoring and auto-completion 0 10 0
Testing 0 2 17
Documentation 0 2 15
Miscellaneous 7 4 9

within a peak actually describe problems mentioned in the poten-
tial users’churn). Again, both co-authors analyze and discuss every
analyzed sample.

In this RQ, we perform our analyses only in our studied projects
(as opposed to analyzing all the software alternatives in their do-
mains). As discussed in Section 3, it would be impracticable to
extract the data from all the different Issue Tracking Systems of the
software alternatives in the studied domains.
Findings:We respectively observe a cross-correlation of 0.76, 0.72,
and 0.70 in Firefox, Eclipse and Apache. These cross-correlation
scores indicate that there exist a global commonality between the
trends of the two time-series regardless of the timing factor.

Regarding our DTW analysis, we observe that the time from
the filing of an issue report to the time of a spark in potential
users’churn span from 2 to 4 weeks (on the median for the three
projects). Additionally, our DTW correlation reveals a bidirectional
relationship between the peaks in issue reports and the peaks in
potential users’churn. For the cases where a peak in issue reports
leads to a peak in potential users’churn, it is intuitive to think that
the peak in potential users’churn is due to the frustration generated
by the issues described in the reports. On the other hand, the cases
where a peak in potential users’churn is followed by a peak in
issue reports may occur due to users being frustrated over non-
obvious issues. For example, if we consider the potential user churn
depicted in Figure 3 (i.e., “Jupyter is slow on Firefox”), the users might
not find it obvious that such a problem should be reported to the
Firefox team (e.g., users may simply interpret it as a characteristic
of Firefox). Therefore, in such cases, issue reports would be filled
only a while after the potential users’churn have been expressed.

We are specifically interested in studying the relationship be-
tween reported issues (i.e., the documented issues in the tracker
systems) and the potential user churn. Our rationale is that under-
standing the characteristics of issues that are associated with user
churn can help developers to prioritize such issues and avoid future
churn (thereby, retaining more users).

Finally, Table 5 shows a subset of the examples found in our
manual analyses. We can indeed observe the apparent relationship
between the comments within the potential users’churn and the
descriptions (or titles) of issue reports. The examples are following
a unidirectional link, in which the issue report that occurs at a
certain time would induce the potential user churn at a later time.
Summary: Our results suggest that there exists a significant cor-
relation between software issues and potential user churn.

RQ2: Can we use machine learning models to
predict the rate of potential user churn?
Motivation: In the practice, most of the issue reports undergo hu-
man estimations of the priority and the severity [5], usually based
on internal business-oriented factors (such as ROI [25]). Issues
might be prioritized by their recency, the affected platforms, the
versions of the software where the issue is present. Feeding a ma-
chine learning model to identify the potential user churn that are
caused by issues may help automate the issue report prioritization
process and ultimately save huge costs in software development.
Approach: We train three different machine learning models to
predict low and high user churn rates by using information from is-
sue reports. The first model is a Feed-Forward Neural Network with
two hidden layers developed by using the framework Keras [17].
Keras is widely used to train simple neural networks as it has
a higher abstraction than TensorFlow [1]. Feed-Forward Neural
Networks [64] are the most suitable type of neural networks to
be trained on tabular data [27, 33, 50]. This network evaluates all
the possible combinations of different metrics values to guide the
predictions.

Our second model is the XGboost model, which is a gradient
boosting tree [12, 13]. XGboost is widely used for binary classifica-
tion problems. Research has shown that XGboost performs better
than neural networks and classic classification machine learning
algorithms in problems dealing with tabular data [14, 45, 69].

We also train Random Forest models [35]. Random Forest is
a classical machine learning algorithm which is widely used in
problems dealing with tabular data [26, 51, 57]. In addition, Ran-
dom Forest models have been widely used in software engineering
research, such as in defect prediction [67].

The goal of ourmodels is to predict the rate of potential users’churn
given the characteristics of issue reports. The data used to fit our
models is the data obtained from our DTW associations. Simply put,
the DTW provides us with 𝑃 pairs of issue reports 𝐼 and potential
users’churn 𝐶 (i.e., 𝑃 < 𝐼 ,𝐶 >). Therefore, we study the character-
istics of the issues 𝐼 to predict the amount of potential user churn
𝐶 . We split the distribution of 𝐶 into two percentiles (i.e., low and
high). The low percentile being from 0% to 50% and the high from
51% to 100%. Thus, our models output dichotomous predictions, i.e.,
whether the potential users’churn is low or high.

The characteristics of issue reports that we include in our models
(henceforth referred to as features) are described in Table 6. These
features are collected from the Issue Tracking systems of our three
studied projects. We study features such as Component, Hardware,
and OS to account for the locality and the spread of the issues.
For example, these features can indicate whether platform-specific
issues or more general issues have more potential user churn.

Other features, such as the Severity and Priority showcase the
prioritization used by developers. The Severity and Priority are
important for us to verify whether the prioritization performed by
developers is aligned with the rate of potential user churn.

Features related to the type of the bugs (i.e., whether it is a
crash), whether a version number is present, or the target milestone,
provide us information regarding the tracking process of issues.
They are important to understand whether better-tracked issues

7

shassan
Highlight

shassan
Highlight

shassan
Underline

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Underline

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MSR’20, October 5–6, 2020, Seoul, Republic of Korea Anonymous, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Manual investigation of DTW correlation linking

Firefox
Example 1
Correlation Linking Week 164 in issues to week 169 in switches (May 2018)
Issue Report Title Firefox version 53.0.3 appears high memory, high resources usage and might causing for SSD damages
Issue Description Mozilla Firefox it is caching all of this data 4-5GB on my new SSD and its lost 4% from its health within 5 months, due continuously writes/overwrites firefox cache on my SSD.
Altrnativeto Comment Switching to Chrome after version 53.0.3, high memory is damaging my SSD
Example 2
Correlation Linking Week 66 in issues to week 68 in switches (November 2016)
Issue Report Title Sessions are not cleared in the private window
Issue Description After closing private window (not a tab) and opening a new one I still logged in.
Altrnativeto Comment Chrome incognito functionality is more stable than Firefox, Firefox doesn’t resets sessions.

Eclipse
Example 1
Correlation Linking Week 10 in issues to week 11 in switches (July 2015)
Issue Report Title Not Java 8 Compatible
Issue Description When downloading Eclipse for the first time for Java development, 64-bit (which is what my computer is), it is not running because it is not compatible with Java version 8.

(which is the latest version of Java), but appears to be compatible with version 7 still -Dosgi.requiredJavaVersion=1.7
Altrnativeto Comment Using Netbeans because Eclipse is not installing.
Example 2
Correlation Linking Week 211 in issues to week 213 in switches (February 2019)
Issue Report Title jar files in the exported application do not contain class files
Issue Description The application has many plugins. It builds and runs well within eclipse, but when I export the application using the eclipse export product wizard, the jar files (corresponding to

the plugins) do not contain any class files! they include meta-inf, plugin.xml, and all the extra folders (eg lib, assets, etc, when available), but they do NOT contain any class files.
Altrnativeto Comment Didn’t find any problems in exporting jar (when recommending IntelliJ).

Apache
Example 1
Correlation Linking Week 113 in issues to week 117 in switches (July 2017)
Issue Report Title httpd 2.4.26 no longer building against lua 5.3.1 or lua 5.3.4
Issue Description Building Apache 2.4.26 against lua 5.3.1, or 5.3.4 compiled from scratch (latest version as of this writing) does not work. Compilation against lua 5.3.1 did work with 2.4.25.
Altrnativeto Comment Some issues while building with lua (when recommending XAMPP).
Example 2
Correlation Linking Week 12 in issues to week 13 in switches (September 2019)
Issue Report Title Apache Server is restarted time to time (Release 2.4.10)
Issue Description I am using Apache release 2.4.10 in Windows Server 2008. Time to time the Apache server is getting restarted. The service is unavailable for 3-5 minutes and after that the service

is started up automatically. This issue occurs frequently. twice a day, two days once etc..
Altrnativeto Comment XAMPP is more stable, I am experiencing random restarts throughout the day when using Apache.

Table 6: The issue reports attributes for Firefox, Eclipse and
Apache

Metric Description

Component consists of different components of the system such as bookmarks,
theme, toolbar, etc.

Status describes the status of the issue such as unconfirmed, open, re-
solved, etc.

Resolution describes the resolution type of the issue such as fixed, duplicate,
invalid, etc.

Severity the assigned severity such as blocker, critical, normal, etc.
Hardware the different hardware affected by the issue such as desktop, mobile,

32 or 64 bits, etc.
OS the different OS affected by the issue such as OSX, Windows, etc
Priority the assigned priority from 1 to 5
Type the assigned issue type such as defect, enhancement, or task
Time Alive the time difference between the date opened and the date resolved

in minutes
Time since last change the time difference between the date opened and the date of last

change in minutes
Is a Crash a boolean value to indicate if it is a crash report
Has a Version Number a boolean whether the issue report has a version number
Has a Target Milestone a boolean whether the issue report has a target number
Has a Regression Range a boolean value to indicate if the bug causes a regression testing
Number of comments the number of comments for the report
Number of votes the number of votes for the report, which validates the integrity of

the report by other users
Number of Blocks the number of issues that are blocked by that issue until it is re-

solved

(i.e., with more tracking information) are associated with potential
users’churn.

The number of comments, votes, and blocks showcase the effort
invested on discussing an issue. Finally, the time-alive and the time-
since-last-change are two features related to the life-cycle of an issue
report. Longer time-alive values indicate a lingering issue that has
not been resolved yet, while a short time-since-last-change values

indicate issues that have been recently addressed (and thus can still
be reoccurring).

Our studied features are inspired by previous research in soft-
ware engineering that have built machine learning models using
information present in issue reports [15, 16, 16, 18, 19, 29, 32, 39, 74].

We chose features that are common across the issue reports of
Firefox, Eclipse and Apache. We filtered out features that are unique
to an issue tracker system only to ensure a fair comparison between
our studied issue reports. Afterwards, we performed Spearman
correlation tests [44] on the selected features, in which each feature
is tested against the set of all the other features. We did not observe
any correlation obtaining a value higher than 0.7, which suggests
that our selected features are not correlated and can be safely fed
into our machine learning models [30].

To evaluate the performance of our models, we use the Area Un-
der the Curvemetric (AUC). AUC is useful for evaluating our models
because our models output probabilities. Therefore, AUC shows
the discrimination power of our models in every probability thresh-
old (unlike Precision, Recall, or F-measure, which are limited to
evaluating models at a single probability threshold [66]). The AUC
values range from 0 to 1. An AUC of 0.5 denotes a random guessing
model while an AUC of 1 denotes a perfect distinguishing power.
An AUC of 0 denotes a model with perfect inverse predictions.

Given the temporal nature of our data (i.e., future issue reports
cannot be used to predict the potential user churn of past issue
reports), we adopt a leave-one-out validation approach to obtain
our AUC values.

First, our issue reports have already been sorted when we per-
form the time-series analyses. Second, we split our data into two
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sets: one containing 80% of the data, i.e., the training set and an-
other containing 20%, i.e., the validation set. In the first iteration
of our models, we use 80% of the data to train our models and we
use the first element of the validation set to test out models. Then,
the leave-one-out validation iteratively increases the training set
size by one element (from the validation set) and predicts the next
element of the validation set. This process is repeated until the
training set reaches the size of 𝑁 − 1 (where 𝑁 is the size of our
data set). Finally, our obtained AUC values are the aggregation
(i.e., median) of all the AUC values obtained in the leave-one-out
iterations.
Findings:TheAUC values obtained for our threemodels are shown
in our online appendix.8 The XGboost model performs the best in
the three studied projects, obtaining AUC values that exceed 0.83.
There exists a subtle difference between the AUC values of the
XGboost model and the Feed Forward Neural Networks AUCs,
since both the XGboost model and the Neural Networks can grasp
the complex relationships in our issue reports data.
Summary: Our results suggest that machine learning models, such
as XGboost and Feed Forward Neural Networks, can predict the
rate of user churn with relatively high accuracies (in terms of AUC).
Such predictions could help in the prioritization of issue reports.

RQ3: What are the most important factors
related to potential user churn?
Motivation: In RQ2, we observe that machine learning models
can be used to predict the rate of potential users’churn. However,
developers would hardly blindly trust a machine learning model
to help on their decisions (and they should not do so). Developers
would mostly benefit from understanding the reasons behind the
predictions of our machine learning models, so that they could
possibly adapt (or not) their development process. Therefore, in
RQ3, we investigate the most important features in the predictions
of our machine learning model.
Approach: In this RQ, we study the most important features in the
predictions of the XGboost models, since they obtain the best AUC
values in our three studied projects.

To find the most important features, we adopt a simple feature
extraction algorithm [61, 70]. Consider that our models are trained
on a feature set 𝑋 = 𝑥1, 𝑥2, ..., 𝑥𝑛 (as explained in RQ2). The feature
extraction process consists of iteratively (i) removing each feature 𝑥𝑖
from our models and (ii) computing the AUC without each feature
𝑥𝑖 (by using the same leave-one-out validation process explained
in RQ2). The AUC values from the models without a feature 𝑥𝑖 are
compared to the models containing all the features (i.e., we take
the difference 𝐴𝑈𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −𝐴𝑈𝐶𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ). The higher the drop in
the AUC value caused by removing a certain feature 𝑥𝑖 , the higher
the importance of such a feature 𝑥𝑖 [4, 9, 10].
Findings: Table 7 shows our obtained results after performing the
feature extraction process. The table shows the drop in the AUC for
each feature (i.e., ΔAUC). We also show the minimum, maximum,
mean, and median values of the features in the 𝑙𝑜𝑤 user churn rate
(i.e., 0) and ℎ𝑖𝑔ℎ user churn rate (i.e., 1) prediction classes.

8https://doi.org/10.5281/zenodo.3610584

The Issue Alive Time is the most important feature, obtaining the
highest ΔAUC in our three studied projects. This result suggests
that it is unhealthy to leave issues hanging for a long time as they
can be perceived as a reason for users to churn.

The Number of Comments obtains a considerable ΔAUC in our
three studied systems. The association between the Number of
Comments and the rate of user churnmay occur due to themultitude
number of users being affected by an issue.

The Time-since-last-change is also an important feature in the
Firefox and Eclipse projects. This result suggests that issues with
recurring changes or modifications may signal a certain instability
in the fixing process, which might cause a potential user churn in
the future.

It is worthy noting that features, such as Severity, Priority, and
Type of Bugs do not obtain a high importance in the predictions,
which might suggest that the existing prioritization fields used in
issue reports are misaligned with the potential user churn.
Summary:Our results suggest that long lived issues can potentially
lead to more potential user’s churn and that the existing processes
for prioritizing issues should be augmented to capture the highly
interactive and long lived issues.

5 THREATS TO VALIDITY
Construct Validity: The main construct validity of our study is
related to the assumption of a potential user churn. The alterna-
tiveto.net website does not record exactly when a user has chosen a
software alternative over another software. Instead, alternativeto.net
records that a user thinks that a software may be a good alternative
to another software. The motivation behind the act of signaling an
alternative is not known by us. For example, there might be users
that are simply driven by the passion of contributing to the alterna-
tiveto.net community, which lead them to provide several opinions
as to which software could make good alternatives to others. We
have deliberately adopted the term potential user churn instead of
simply user churn due to this unknown motivations behind signal-
ing alternatives. Moreover, it is reasonable to think that if a given
software has received a considerable amount of recommendation
for alternatives, this may likely indeed represent that users are
considering to change the software.

Internal Validity: Our internal threats to validity are mainly
related to (i) our chosen features and (ii) our prediction classes. We
split the peaks of potential user churn into the low and high classes.
Other research may find different results if the potential user churn
is modeled in different way. In addition, we acknowledge that our
set of metrics is not exhaustive. For example, we have not studied
whether the presence of a stack-trace in an issue report can be
related to future potential user churn. We plan to (i) model the
potential user churn as a continuous variable and (ii) extend our set
of features to predict the potential user churn in future research.

External Validity: Our study targeted three domains that are
web servers, IDEs and web browsers. These three domains were
chosen due to their availability, since we could fetch their issue
reports data. Although our study showed common factors in our
analyses, we cannot generalize our results to other domains or
projects with a different scale (i.e., smaller projects). Regardless, our
work provides insights of the possible reasons behind user churn.
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Table 7: The most important features for Firefox, Eclipse, and Apache ranked by their drop in AUC

Factor ΔAUC Min 0 Max 0 Mean 0 Median 0 Min 1 Max 1 Mean 1 Median 1

Firefox
Time Alive 0.13 0 120 11.02 13 10 1487 48.72 63
OS All 0.07 0 1 0.14 0 0 1 0.83 1
Number of Comments 0.06 1 65 8.94 12 1 458 28.11 45
Time Since Last Change 0.06 9 30 10.90 22 0 5 4.10 3
Has a Target Milestone 0.05 0 1 0.22 0 0 1 0.79 1
Has a Version Number 0.04 0 1 0.33 0 0 1 0.64 1
Component UI Web Payments 0.03 0 1 0.42 0 0 1 0.61 1

Eclipse
Time Alive 0.12 0 103 9.01 12 8 1334 43.96 49
Has a Target Milestone 0.06 0 1 0.19 0 0 1 0.82 1
Time since last change 0.06 7 27 8.51 19 0 6 3.12 3
Has a Version Number 0.05 0 1 0.34 0 0 1 0.77 1
Component Debug 0.04 0 1 0.47 0 0 1 0.72 1
Number of Comments 0.03 1 72 10.92 11 1 632 27.01 72
OS All 0.02 0 1 0.50 0 0 1 0.68 1

Apache
Time Alive 0.14 0 136 11.32 14 14 1521 53.10 70
Component Utils 0.10 0 1 0.22 0 0 1 0.91 1
Has a Version Number 0.09 0 1 0.38 0 0 1 0.86 1
Number of Comments 0.05 1 92 12.32 6 1 352 42.07 79
OS All 0.04 0 1 0.33 0 0 1 0.79 1
Status REOPENED 0.03 0 1 0.40 0 0 1 0.73 1
Hardware All 0.02 0 1 0.51 0 0 1 0.78 1

6 RELATEDWORK
Given that we study the relationship between potential user churn
and issue reports, our research is related to the areas of user/customer
churn and software quality. Therefore, we survey the related re-
search around these two areas in this section.

User/CustomerChurn.User or customer churn has beenwidely
studied in the area of telecommunication services [3, 28, 71]. Amin
et al. [3] proposed a cross-company machine learning model to
predict customer churn. The authors also propose the use of data
transformation (e.g., by using the log function) to improve the train-
ing data. Ullah et al. [71] used feature selection techniques, such as
Information Gain and Correlation Attributes Ranking Filter to select
which features better explained the churn behaviour of different
customer groups. The authors observed that a Random Forest model
performed the best in their study. While the Business to Customers
(B2C) churn has been widely studied, Figalist et al. [28] recently
investigated the Business to Business (B2B) churn, i.e., when the
customer business changes shifts to the services provided by the
competition. Figalist et al. [28] allude that although B2B relation-
ships tend to be more stable, they have a much bigger financial im-
pact when they change. In terms of software engineering, there has
been a lack of studies that have investigated user/costumer churn
directly. Instead, much research has been invested on customer
reviews regarding software products [6, 46, 47]. Noei et al. [46]
studied which features from mobile apps are associated with better
ranks in the Google Play store. While the work by Noei et al. [46]
does not study the customer churn directly, striving for better ranks
in Google Play may avoid user churn in mobile apps. Bavota et
al. [6] investigated the relationship between the usage of fault- and
change-prone APIs in Android apps and user reviews. Differently
from all the aforementioned work, our study investigates the user
churn is software products.

Software Quality. Although there exist a lack of studies ana-
lyzing the user churn of software products/services, there has been
a considerable amount of research on software quality [5, 34, 39, 66,
67, 74]. Research on software quality is important, since a quality

software is more stable and less defect-prone. Ultimately, such char-
acteristics are tightly related to the observations of our study(i.e.,
software issues are correlated with user churn). A prominent area
of software quality research in software engineering is the defect
prediction area [66, 67]. Tantithamthavorn et al. [66] studied how
much improvement can be obtained by automatically optimizing
defect prediction models. Their research shows that automatic op-
timization can yield significant or insignificant performance gains
depending on the machine learning algorithm. Other considerable
amount of research has been invested on the triaging part of issue
reports [5] and on the effort estimation of an issue report (in terms
of time to address an issue) [39, 74]. In this paper, we complement
prior research by studying the relationship shared between issue
reports (e.g., defects or required enhancements) with the potential
user churn of users.

7 CONCLUSION
In this work, we study the data available on alternativeto.net to
better understand the relationship between software issues and the
potential user churn of users. Having observed that user concerns
are tightly related to software issues (e.g., bugs), we investigate
the relationship between issue reports and the potential user churn
of users. Our study reveals key issues that must be addressed for
the success of a software product (depending on the domain). For
example, we observe that the potential user churn of users may be
tightly related to the lack of a robust documentation and support for
testing tools (in the “IDE” and “Web Server” domains). Finally, our
machine learning models reveal that (i) the longer the issue takes to
be fixed, the higher the chances of user churn; and (ii) issues within
more general software components are more likely to be associated
with user churn. Finally, we suggest that the current prioritization
performed by developers should be augmented to encompass the
long lived and highly interactive issues. In overall, our study sug-
gests that the prioritization process of issues can be improved by
considering the potential user churn of users associated with such
issues.
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