
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

On the Relationship between User Churn and Software Issues
Omar El Zarif

oelzarif@cs.queensu.ca
Queen’s University

School Of Computing
Kingston, Ontario, Canada

Daniel Alencar Da Costa
danielcalencar@otago.ac.nz

University of Otago
Department of Information Science

Dunedin, Otago, New Zealand

Safwat Hassan
shassan@cs.queensu.ca
Queen’s University

School Of Computing
Kingston, Ontario, Canada

Ying Zou
ying.zou@queensu.ca
Queen’s University

Department of Electrical and Computer Engineering
Kingston, Ontario, Canada

ABSTRACT
The satisfaction of users is only part of the success of a software
product, since a strong competition can easily detract users from a
software product/service. User churn is the jargon used to denote
when a user changes from a product/service to the one offered
by the competition. In this study, we empirically investigate the
relationship between the issues that are present in a software prod-
uct and user churn. For this purpose, we investigate a new dataset
provided by the alternativeto.net platform. Alternativeto.net has
a unique feature that allows users to recommend alternatives for
a specific software product, which signals the intention to switch
from one software product to another. Through our empirical study,
we observe that (i) the intention to change software is tightly asso-
ciated to the issues that are present in these software; (ii) we can
predict the rate of potential churn using machine learning models;
(iii) the longer the issue takes to be fixed, the higher the chances of
user churn; and (iv) issues within more general software modules
are more likely to be associated with user churn. Our study can
provide more insights on the prioritization of issues that need to
be fixed to proactively minimize the chances of user churn.

KEYWORDS
software issues, users churn, software alternatives, deep learning

ACM Reference Format:
Omar El Zarif, Daniel Alencar Da Costa, Safwat Hassan, and Ying Zou.
2020. On the Relationship between User Churn and Software Issues. In 17th
International Conference on Mining Software Repositories (MSR ’20), October
5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3379597.3387456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387456

1 INTRODUCTION
User satisfaction is essential for the success of software projects [22,
23, 60]. In fact, even when the budget and the schedule of a project
are in control, user dissatisfaction may still lead the project to
failure [43, 76]. Users tend to discuss in public (e.g., public forums)
their preferences and disappointments regarding software, in which
they often mention what made them love or hate a software product
(e.g., by providing ratings and detailed comments). Such data about
user satisfaction has been continuously used by researchers to study
the most important factors to explain user satisfaction. For example,
Panichella et al. [52] identified useful user reviews of mobile apps,
so that developers can improve their apps accordingly (e.g., by
addressing feature requests within such reviews). Other research
works have extracted user feedback [31], and studied the planning
process of future releases based on user reviews [72].

Nevertheless, the success of software projects is not only defined
by the relationship between the software product and its users, but
also by the strengths and weaknesses of competitors. For instance,
studies have shown that a poor user experience may create a point
of no return in which the user is led to the competition or searches
for alternative solutions [62]. In addition, a poor user experience
may create a bad reputation for the software product, which impairs
the adherence of new users [11] (which would likely adhere to the
competitors). Therefore, an important area of study is to unveil the
underlying reasons for losing users to competitors. User churn is
the jargon used to denote when a user decides to change from a
product/service to those offered by the competition.

User churn has been studied extensively in areas other than
software engineering, such as mobile operators and telecommuni-
cation networks [20, 53, 73]. In fact, Wei et al. [73] observed that
the cost of acquiring new users is more expensive than retaining
users. Several services investigate their own user base characteris-
tics to predict user churn. There has also been research targeting
Yahoo Answers [24], StumbleUpon (a web content recommenda-
tion system) [21], Top Eleven - Be A Football Manager (an online
mobile game) [41], Pengyou (a Chinese social network) [37], using
prediction models for predicting user churn.

Although prior research has studied the concerns of users re-
garding software products (including mobile apps), there has been
a lack of empirical research to investigate user churn in the context
of software products. Filling this gap is important to help open

1

https://doi.org/10.1145/3379597.3387456
https://doi.org/10.1145/3379597.3387456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MSR’20, October 5–6, 2020, Seoul, Republic of Korea Anonymous, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

source and corporate software organizations to retain their users
and improve their probability of success (not to mention the overall
satisfaction of users).

In this paper, we use data obtained from the alternativeto.net1
website, which has a unique feature that allows users to recommend
alternatives for a specific software product. The recommendation
of alternatives can signal the intention to switch from one software
product to another (we provide an example of this scenario in Sec-
tion 2). For the sake of simplicity, we refer to the recommendation
for an alternative software product as simply potential user churn.

By using the alternativeto.net dataset, we formulate an empirical
study to investigate the (i) Web Browsers, (ii) IDEs and (iii) Web
Servers domains on the alternativeto.net website. We first extract
3,556 reviews and 10,081 comments to better understand the overall
concerns of users regarding the software products in the studied
domains. Next, we extract 12,549 recommendations for alterna-
tives by users (i.e., potential user churn) from the Firefox, Eclipse,
and Apache projects. We specifically choose these projects for the
deeper analyses because these projects are established in the Web
Browser, IDE andWeb Server domains, respectively.

To investigate the underlying reasons for the potential user churn
of software products, we pose four research questions that guides
our study:

• RQ0: What are the most significant users’ concerns for Browsers,
IDEs and Web Servers? Understanding users’ concerns will pave
the way to grasp the reasons behind potential user churn. When
discussing the pros and cons of a software product and competi-
tors, users voice varied concerns (e.g., security & privacy issues or
memory issues).
• RQ1: Can we find a correlation between potential user churn and
issue reports? Given that the issues that are present in the studied
projects are the predominant topic in users’ concerns, we study
whether there exists a correlation between the issue reports of a
given software project (i.e., Firefox, Eclipse, and Apache) and the
potential user churn.
• RQ2: Can we use machine learning models to predict the rate of
potential user churn? After correlating issue reports with potential
user churn, we study whether machine learning can be used to
predict the rate of potential user churn (expressed by high or low
user churn). To build our machine learning models, we use latent
features from the issue reports of our studied project.
• RQ3: What are the most important factors related to potential user
churn? given that machine learning models can be used to predict
the rate of potential user churn, we can then extract the most
important features that are associated to the potential user churn.
The reoccurring bugs, the time alive factor, and the issues across
multiple platforms are common factors that are highly associated
with the potential user churn.

The paper is organized as the following, we showcase a motivat-
ing example in Section 2. We describe our data collection process
in Section 3. We delve into our approach and show our obtained
results in Section 4. We discuss the threats to validity in Section 5.
In Section 6, we present the related work. Finally, we conclude the
study in Section 7.

1https:\alternativeto.net

Figure 1: Example of a pdf reader on the alternativeto.net
website.

2 MOTIVATING EXAMPLE
The goal of the alternativeto.net website is to help users to find
software alternatives that can better address the users’ necessities.
For instance, let us consider that a user needs a better .pdf reader
(e.g., the current reader freezes occasionally). The first challenge
occurs because the user is not aware of all the available software
alternatives. In addition, choosing an alternative for a software
is not always simple, since users may be already familiar with a
set of features (from the software in use), which they would not
like to compromise. Considering the .pdf reader example, while
the user wishes a freezing-free alternative, the user may only feel
comfortable to change if the alternative provides the same level of
commenting capabilities (as compared to the reader in use).

With such challenges in mind, the alternativeto.net website was
designed to help users choose the best software alternative for their
needs. Figure 1 shows an example of an initial page of a software
product on alternativeto.net. This initial page provides a description
of the software, features, categories, and tags. The features, cate-
gories and tags are used to organize the software alternatives on
alternativeto.net and can be used to search for software alternatives.
Interesting to note, is the “Alternatives” tab depicted in Figure 1,
which shows all the available alternatives for a software product
(as deemed by the community).

Alternativeto.net allows users to provide reviews for software
alternatives along with ratings (similarly to Google Play, which
allows reviews to be provided for mobile apps). However, what sets
alternativeto.net apart from other platforms is that it allows users to
voice their opinions by placing a software product in perspective to
its competitors. For example, Figure 2 shows the opinions voiced by
users as to whether (and why) Chrome is a good (or bad) alternative
to Firefox.2

As shown in Figure 2, users do not only comment on the prod-
uct being evaluated, but also put the product in perspective to its

2https://alternativeto.net/software/firefox/

2

https:\alternativeto.net
https://alternativeto.net/software/firefox/

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

On the Relationship between User Churn and Software Issues MSR’20, October 5–6, 2020, Seoul, Republic of Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: https://alternativeto.net provides in-perspective
comments where users specify why a certain software alter-
native (e.g., Firefox) can be better than the current software
(e.g., Chrome)

Figure 3: Recording the recommendation for an alternative
for Firefox

competitors. For example, a user mentions “[Chrome] does not have
as many languages and spell checking support as Firefox does.3”

Because the opinions are voiced with respect to competitors (i.e.,
the in-perspective comments), alternativeto.net provides a unique
opportunity for empirical studies. Particularly in our study, the
in-perspective comments allow us to investigate the most recurrent
concerns within the competition scene of a software domain (we
perform this investigation in RQ0).

Another interesting and unique characteristic in the aterna-
tiveto.net data is the register of users that recommended alternatives
for a given software product (i.e., the potential user churn). For
example, Figure 3 shows how alternativeto.net records when a user
indicates that Chrome can be a good alternative to the Firefox web
browser (along with the reason why). This data is important be-
cause it can be used to proactively identify potential user churn in
software products (e.g., by using machine learning). Based on this
information, we build machine learning models and report on their
results in RQ2 and RQ3.

Finally, the potential user churn provided by alternativeto.net
allow us to investigate whether it is related to prominent issues
that may be present in a software product. For example, while a
user has expressed the reason for a possible user churn in Figure 3
(i.e., Jupyter is slow on Firefox), the development team of Firefox
is also working on an issue report that expresses the same issue
(see Figure 4). In this paper, we hypothesize that there may exist
strong links between potential user churn and the issue reports that
are submitted to software products (we perform this investigation in
RQ1).

3To provide an opinion as to whether a software product is a good or a bad alternative
to another product, users must prove they are not robots. Only afterwards, a text box
containing the submission form will be provided.

Figure 4: Issue report expressing the problem voiced by the
user in Figure 3

We capitalize on these unique characteristics of the alterna-
tiveto.net data to perform our empirical study on the relationship
between potential user churn and software issues.

3 DATA COLLECTION
Alternativeto.net organizes the software alternatives through several
means, such as categories, features, or tags. Categories are the broad-
est way to categorize software alternatives and alternativeto.net has
over 25 categories of software alternatives at the time of this study.
Tags and features are more specific ways to categorize software
alternatives (e.g., the “IDE” tag or the “responsive design” feature).
Another characteristic of tags and features is that they can be added
by users. However, these new tags and features must be verified by
the alternativeto.net community before being added to the website.
For the purposes of our study, we use tags to filter our data for
software alternatives because it is more precise than using cate-
gories. For example, we can easily filter for the software alternatives
within the Web Browser domain using the “web browser” tag. On
the other hand, it would be hard to filter our data based on the
features. For example, filtering by “responsive design” may retrieve
software from very distinct domains.

For the sake of data robustness, it is tempting to analyze all
the software alternatives from all the software domains that are
available on the alternativeto.netwebsite. However, since one of our
main objectives is to study the relationship between potential user
churn and the issues that are present in the software products, we
need to restrict our analyses to the domains of certain software. For
instance, it would be virtually impossible to collect and analyze all
the issue reports from every software alternative listed on the alter-
nativeto.net website. Every different software alternative may use
a different Issue Tracking System, which would require different
ways for collecting data. Therefore, we analyze the software alter-
natives within the domains of three well established open source
projects: Eclipse,4 Firefox,5 and the Apache server.6 Our choice for
these three projects was based on the extensive prior empirical
software engineering research that has been conducted using these
projects over the years [2, 7, 18, 19, 29, 36, 42, 54].

To collect the data for our study, we followed the process de-
picted in Figure 5. Given our chosen studied projects, we collect
all the software alternatives tagged with the “Browser”, “IDE”, and
“Web Server” tags, which are the respective domains of the Eclipse,
Firefox, and Apache projects. In total, we collect 290 browser alter-
natives, 296 IDE alternatives, and 134 web-server alternatives. Once
the software alternatives are fetched, we collect the in-perspective
4https://www.eclipse.org/
5https://www.mozilla.org/en-US/firefox/new/
6https://httpd.apache.org/

3

https://alternativeto.net
https://www.eclipse.org/
https://www.mozilla.org/en-US/firefox/new/
https://httpd.apache.org/
shassan
Highlight

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MSR’20, October 5–6, 2020, Seoul, Republic of Korea Anonymous, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: A summary of our collected data.

Domain Alternatives Reviews Comments Potential churn Issue reports

IDEs 296 1,088 3,036 4,319 (Eclipse) 22,758 (Eclipse)

Browsers 290 1,754 5,112 6,421 (Firefox) 40,749 (Firefox)

Web Servers 124 714 1,933 1,809 (Apache) 20,965 (Apache)

comments (explained in Section 2) and the reviews for all the soft-
ware alternatives. We also collect the potential user churn (explained
in Section 2) for the Eclipse, Firefox, and Apache projects. Finally, in
addition to the data collected from alternativeto.net, we also collect
the issue reports from the respective Issue Tracking Systems of our
studied projects. We use the potential user churn data combined
with the issue reports to perform our investigations in RQ1-RQ3.
Table 1 summarizes the data collected for our study (i.e., the data
type and the amount of collected data).

4 RESEARCH QUESTIONS & RESULTS
In this section, we present our research questions (RQs) along with
their results. For each RQ, we present its motivation and explain
the approach that is used to conduct the RQ.

RQ0: What are the most significant users’
concerns for Browsers, IDEs and Web Servers?
Motivation: The motivation behind RQ0 is to understand the main
concerns within the competition scene of a specific software do-
main. This investigation is important to highlight what are the
main strengths and weaknesses within a particular domain (e.g.,
Browsers). This knowledge can be useful because, for example, an
organization can study the main weaknesses within a domain and
better assess whether its products/services fall within the same
flaws.
Approach: To study the most significant concerns related to
Browsers, IDEs and Web Servers, we use the in-perspect comments
and reviews data that were explained in Section 3. To analyze such
data, we adopt the Latent Dirichlet Allocation (LDA) to find the
main topics that are present in the in-perspective comments and
reviews data. We use the LDA implementation provided by the
MALLET framework [40]. LDA is a probabilistic generative method
that assumes a Dirichlet distribution of latent topics. LDA is partic-
ular useful for us, since we are interested in finding the main topics
that are present in the in-perspective comments and reviews data.
However, The LDA model requires the data to be pre-processed
in a certain format for optimal results. Therefore, we follow the
standard text pre-processing steps [48]:

Fixing Typographical Errors. Typographical errors can be
due to the usage of internet slang in a written text or simply due to
common language mistakes. The most recurrent of errors that we
find in our data is the repetition of characters. For example, users
tend to use words, such as “beeeest” to emphasize their feelings. We
use the Pattern For Python [63] package to fix such typographical
errors.

Removing Stop Words: Examples of stop words are "of", "by"
and "the". These are words that are recurrently used in written text,
but do not possess meaning by themselves. We use the package

nltk [8] to remove such stop words. This package contains a well-
known corpus of stop words and is widely used for text filtering.

Stemming andLemmatization. For better results, words should
be repeated as frequently as they can, since LDA relies heavily on
the occurrences of words in different sentences. Hence, the usage
of stemming and lemmatization is essential. These methods trans-
form inflectional forms of a word to its basic form. For example,
the words “fixed”, “fixing”, and “fixes” are transformed to the basic
form “fix.” Stemming works by removing the suffix of the word
(e.g., the word “cats” becomes “cat” by removing the “s”), while
lemmatization retrieves the basic form of a word from a dictionary
known as lemma (by using morphological analysis). We use both
stemming and lemmatization to ensure that we obtain the most
unique words possible.

Forming Bigrams and Trigrams. Forming bigrams and tri-
grams is essential to group the words which frequently appear
together. Some words do not inflict any significant meaning for the
LDA model on their own. However, when grouped together, such
words may indicate a specific topic. One example of these words
is “customer support,” which has a precise meaning (as opposed to
only “customer” or “support”, which can hold diverse meanings).

To choose the optimal number of topics in our LDAmodel, we use
the coherence scoremetric [56]. This metric was found to be the best
in alliance with human perception [49, 65]. However, even when
relying on the coherence score (which naturally limits redundancy
in the produced topics), there is still the possibility of duplicate
topics being generated. Therefore, we perform a manual analysis
of the produced topics to eliminate duplicates. Our LDA model
produces topics in the form of keywords and their percentage-
of-significance with respect to the topic. For example, (0.097 ∗
“𝑠𝑜𝑢𝑟𝑐𝑒” + 0.085 ∗ “𝑝𝑟𝑖𝑣𝑎𝑐𝑦” + 0.053 ∗ “𝑡𝑟𝑎𝑐𝑘” + 0.050 ∗ “𝑝𝑟𝑜 𝑓 𝑖𝑡” +
0.038 ∗ “𝑞𝑢𝑎𝑛𝑡𝑢𝑚” + 0.038 ∗ “𝑐𝑜𝑙𝑙𝑒𝑐𝑡” + 0.035 ∗ “𝑝𝑟𝑜𝑡𝑒𝑐𝑡” + 0.032 ∗
“𝑎𝑟𝑐ℎ𝑖𝑣𝑒” + 0.029 ∗ “𝑚𝑜𝑛𝑒𝑦” + 0.026 ∗ “𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒”) are a set of
keywords that indicate Privacy as high level topic. But some other
distribution of keywords could refer to the same topic. Two of the
authors conduct together the manual analyses of the topics. The
final set of topics is only produced when full consensus is reached
between authors (i.e., the authors went over and discussed all the
topics). Because both authors have analyzed together all topics and
agreements were reached on all the topics in the end, we did not
compute inter-rater agreement.

Once the topics are defined, we extract 100 examples (aiming for
a 95% confidence level with a 10% margin error) from our data for
each studied domain (i.e., IDE, Browser, and Web Server), totalling
300 examples. For each example, two of the authors assign their
topic. Again, two authors analyze and discuss each example so
that consensus is reached regarding the assigned topic. Afterwards,
we compute the topic distribution for each domain, which can
represent the most recurrent concerns for that domain.
Findings: Tables 2 and 3 show the topics obtained by our LDA
model.We also show some of the examples for each topic in the table
(all the examples and analyses are available in our replication pack-
age, which is hosted on https://doi.org/10.5281/zenodo.3610584.

Our obtained topics can be categorized into (i) general topics,
which are present in the three domains; and (ii) domain-specific
topics, which might still be present in other domains but are more

4

https://doi.org/10.5281/zenodo.3610584
shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

On the Relationship between User Churn and Software Issues MSR’20, October 5–6, 2020, Seoul, Republic of Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Alternativeto.net

Issue tracking system

Fetch data from

studied domains

IDE, Browser,

and Web Server

alternatives

Fetch in-

perspective

comment and

reviews

In-perspective

comments

Software

reviews

RQ0:

Competition

scene of a

domain

Fetch issues

from Firefox,

Eclipse, and

Apache

Fetch potential

churn from

Eclipse, Firefox,

and Apache

Potential churns

Issue reports

Issues &

Potential churn

pairs

RQ1: Correlating

issues with

potential churns

RQ2: Machine

learning to

predict potential

churns

RQ3: Important

features

associated with

potential churns

Figure 5: An overview of our data collection process.

dominant in a specific domain. Table 4 shows the distribution of
topics per domain based on our manual analyses. We observe that
release and updates, memory issues, bugs/crashes, and cross-platform
availability can be considered as general topics (i.e., they are im-
portant in all the three analyzed domains). Indeed, these topics are
intuitively present when handling any kind of software.

On the other hand, Documentation and testing were present
for web servers and IDEs, signalling that a robust documentation
(which is often overlooked [55]) and with good support for test-
ing tools may definitely attract/retain more users when competing
in the IDE and Web Sever Market. For example, an organization
may direct their attention to these aspects when studying their
competition.

The bookmarks, privacy, and security were exclusively present in
the Browsers domain, signalling that these are essential features to
retain or attract users. Simplistic design, debug options, code refac-
toring and auto-completion are topics that target IDEs exclusively.

Finally, complaints about release and updates, memory issues and
bugs/crashes can be considered as the main topics that drive users
to churn. These topics were present in the three domains with the
highest percentages among each of the domains. The percentages
combined exceed 50% in each of the domains (see Table 4).
Summary: Our observations suggest that the users’ concerns are
tightly related to issues (e.g., bugs or crashes) that are present in
the respective software products.

RQ1: Can we find a correlation between
potential user churn and issue reports?
Motivation: In RQ0, we observe that software issues (e.g., bugs
& crashes and memory issues) are common concerns that may
motivate users to churn. With such an observation, we hypothesize
in RQ1 that the potential users’churn observed on alternativeto.net
may be correlated with the issue reports which developers address
in their respective projects. This analysis is important because if
such a correlation exists, the potential user churn information can
be possibly used to prioritize issue reports (for example, the more
associated with potential user churn the more important the issue
report).

Approach: In our work, we approach the recommendations for
alternatives (i.e., potential users’churn) and the issue reports as
events occurring over time and interpret them as two time-series.
Such an interpretation is handy for two reasons: (i) we can study
the correlation between two trends (potential users’churn and issue
reports); and (ii) we can study whether the specific peaks in issue
reports can be associated with peaks in potential users’churn.

In our study, we group the two time series in a weekly basis,
i.e., all the potential user churn that occurred within a week are
grouped together. We use the weekly grouping because grouping
issue reports in a daily-basis is too narrow to form a pattern, while
grouping them in a monthly-basis can over-generalize the patterns
in issues. The time-series of potential users’churn and the time-
series of issues showcase the events (grouped in a weekly-basis)
from March 2015 (the earliest date on alternativeto.net) to July 2019,
forming 200 weeks grouping.

The first step to correlated our two time-series is to verifywhether
there exists a global correlation between them (i.e., whether there
exist common patterns among the increasing and decreasing trends
over time). To do so, we use the cross-correlation, which is a metric
used in signal processing [77]. This correlation calculates the simi-
larity between two time-series as a function of the displacement
from one time-series to another. For example, given two functions
𝑓 and 𝑔, the cross-correlation calculates the degree to which a shift
in 𝑔 (along the x-axis) is identical to the shift in 𝑓 .

However, since we are also interested in analyzing the relation-
ship between the peaks of our two time-series, we use the Dynamic
TimeWarping (DTW) [58], which was designed for comparing time-
series varying at different speeds. A peak in potential users’churn
may be followed by a peak in issue reports (or vice-versa), i.e., the
peaks may not necessarily occur at the same time. Differently from
the Eucledian distance, which assumes that a point 𝑖 in a time-series
must be aligned to the 𝑖𝑡ℎ point in another time-series [38, 75], DTW
allows the variance in the offset between two time-series [59] .

To employ DTW, we use the tslearn [68], which is a machine
learning toolkit specialized for time series analysis. The DTW com-
putation produces a matrix that shows the distance between every
two points in the graph of the two time-series. The algorithm is
designed in a way to choose the closest point that respects the

5

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Underline

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MSR’20, October 5–6, 2020, Seoul, Republic of Korea Anonymous, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: The predominant topics in alternativeto.net

Release and updates
Keywords “𝑣𝑒𝑟𝑠𝑖𝑜𝑛”, “𝑙𝑜𝑛𝑔𝑒𝑟 ”, “𝑟𝑒𝑙𝑒𝑎𝑠𝑒”, “𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑”, “𝑜 𝑓 𝑓 𝑖𝑐𝑖𝑎𝑙”
Examples - The program seems to be no longer updated. Last versions (2018) can be still downloaded from the official website.

- Firefox version 60+ (Quantum) is better than Chrome. Compare to previous versions of Firefox.

Bookmarks Functionality
Keywords “𝑏𝑜𝑜𝑘𝑚𝑎𝑟𝑘”, “𝑝𝑎𝑛𝑒𝑙”, “𝑓 𝑎𝑣𝑜𝑟𝑖𝑡𝑒”, “𝑠𝑢𝑝𝑝𝑜𝑟𝑡”, “𝑠𝑦𝑛𝑐”
Examples - Firefox now allows bookmarks importing from Chrome which is a huge plus.

- With the recent upgrade to 2.0 (including the bookmarks syncing feature that I liked in Firefox), Vivaldi just got better.

Flash support
Keywords “𝑝𝑙𝑢𝑔𝑖𝑛”, “𝑣𝑖𝑑𝑒𝑜”, “𝑖𝑛𝑠𝑡𝑎𝑙𝑙”, “𝑓 𝑙𝑎𝑠ℎ”, “𝑚𝑒𝑑𝑖𝑎 − 𝑝𝑙𝑎𝑦𝑒𝑟 ”
Examples - Since its the only way to watch Flash video on an iPhone without jailbreaking, Skyfire is a killer app thats worth getting for anyone. Playback of Flash video over WiFi is

flawless, and the quality is, at very least, watchable.

Memory issues
Keywords “𝑚𝑒𝑚𝑜𝑟𝑦”, “𝑅𝐴𝑀”, “𝑙𝑎𝑔”, “𝑙𝑖𝑚𝑖𝑡”, “ℎ𝑒𝑎𝑣𝑦”
Examples - Great C++ IDE which balances memory usage and indexing solution. Contains some basic refactoring functions. Good for large projects and limited RAM with remaining

some capabilities of more complex C++ IDEs.
- Eclipse is really lagging after the last update. The memory is filled whenever I run a Java swing applet.
- Chrome is so heavy, it lags alot when I open multiple tabs.

Privacy and security
Keywords “𝑝𝑟𝑖𝑣𝑎𝑐𝑦”, “𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦”, “𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡”, “𝑎𝑙𝑙𝑜𝑤”, “𝑐𝑜𝑛𝑡𝑟𝑜𝑙”
Examples - Firefox allows far more control over your privacy than does Chrome (or even Chromium on which Chrome is based).

- Google Chrome is a great browser and a lot better than Vivaldi Browser. Chrome keeps updating with cool stuff like the new cast feature, better extensions and lot better
privacy and security. Vivaldi has more customizing features, but has a long way to go to compete with Chrome.

Bugs/Crashes
Keywords “𝑐𝑟𝑎𝑠ℎ”, “𝑏𝑢𝑔”, “𝑓 𝑖𝑥”, “𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒”, “𝑖𝑠𝑠𝑢𝑒”
Examples - Lots of users experience Adobe Flash Player hangs or crashes. I dont know why it isnt fixed yet.

If Chrome ever got its proxy support bugs fixed it would leap to the top of the list and become pretty much the only web browser Id ever use.
- I worked with NetBeans for a couple of years and always loved it, but for professional users the yearly fee is well spent: Nicer interface, better Code Intelligence, more
options to fine tune what happens on saving a file (eg. saving or uploading to various locations). You get a couple of feature update each year plus bugfixes, whereas
NetBeans is sometimes very slow to update things (support for new version of a language) or to fix known bugs.

Table 3: The predominant topics in alternativeto.net (continued)

Debug options
Keywords “𝑓 𝑒𝑎𝑡𝑢𝑟𝑒”, “𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡”, “𝑑𝑒𝑏𝑢𝑔”, “𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛”, “𝑝𝑒𝑟 𝑓 𝑒𝑐𝑡”
Examples - Not enough debug and run options; just a text editor, Atom has not got any solid debugging features (and packages) out of the box or at all.

- This is my favorite code editor. It is open source and portable, you can get a portable version that will fit onto a flash drive if youwant. It is just as configurable
as Sublime Text and has a large community producing great plugins. it has GIT support built in and excellent support for Javascript, HTML, CSS, and Python,
and others of course. It has an integrated debugging system.

Simplistic design
Keywords “𝑠𝑖𝑚𝑝𝑙𝑒”, “𝑒𝑑𝑖𝑡𝑜𝑟 ”, “𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡”, “𝑑𝑒𝑠𝑖𝑔𝑛”, “𝑛𝑜𝑡𝑒𝑝𝑎𝑑”
Examples - Really lightweight with some advanced, not complete but easy to use auto complete features. Simple design and customizable.

Cross-platform
Keywords “𝑐𝑟𝑜𝑠𝑠 − 𝑝𝑙𝑎𝑡 𝑓 𝑜𝑟𝑚”, “𝐿𝑖𝑛𝑢𝑥”, “𝑜𝑝𝑒𝑛 − 𝑠𝑜𝑢𝑟𝑐𝑒”, “𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒”, “𝑖𝑛𝑠𝑡𝑎𝑙𝑙”
Examples - Its cross platform and open source and bring the benefits of the JetBrains IDE platform which is well polished and powerful

- One of the best open source browsers that work on Linux and Windows.

Code refactoring and auto-completion
Keywords “𝑐𝑜𝑑𝑒”, “”𝑎𝑢𝑡𝑜 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛”, “𝑟𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟 ”, “𝑜𝑝𝑡𝑖𝑜𝑛”, “𝑢𝑠𝑒”
Examples - For its young age it is well matured and a very powerful IDE with great CMake Support and other goodies like great refactoring tools and a sophisticated

auto-completion system.

Testing
Keywords “𝑡𝑒𝑠𝑡”, “𝑠𝑒𝑟𝑣𝑒𝑟 ”, “𝑑𝑒𝑝𝑙𝑜𝑦”, “𝑤𝑒𝑏𝑠𝑖𝑡𝑒”, “𝑠𝑒𝑡”
Examples - XAMPP is great tool to develop and test your website (particularly if it uses php, and mysql databases) offline before putting it on a live server. You could

also use XAMPP as an easy method of setting up a live server.
- Eclipse is far more superior than netbeans in unit testing functionality.

Documentation
Keywords “𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛”, “𝑠𝑒𝑟𝑣𝑒𝑟 ”, “𝑝𝑜𝑟𝑡”, “𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒”, “𝑓 𝑜𝑟𝑢𝑚”
Examples - Easiest way to run a web server on Windows. The performance is surprisingly good and lots of documentation on how to manage it.

- Support is via forum only. Documentation can be very poor, particularly around product upgrades (one expects more from commercial packages). Due to
their poor documentation, I lost several years of development databases when porting from an old to a new computer (they dont accurately document the
location of the database files).
- Eclipse lacks in adding plugins documentation.

time constraints for continuity and monotonicity. Finally, two co-
authors performed a manual analysis of the observed peaks in the

two time-series.7 The goal of the manual analyses is to find whether
the identified peaks are indeed likely related (e.g., the issue reports

7We share the data of our manual analyses at https://doi.org/10.5281/zenodo.3610584

6

https://doi.org/10.5281/zenodo.3610584

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

On the Relationship between User Churn and Software Issues MSR’20, October 5–6, 2020, Seoul, Republic of Korea

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: The extracted topics percentages distribution over
the three domains

Topics Browsers(%) IDEs(%) Web servers(%)
Release and updates 18 17 21
Bookmarks functionality 12 0 0
Memory issues 23 22 11
Privacy and security 8 0 0
Bugs/Crashes 24 19 20
Debug options 0 10 0
Simplistic design 0 8 2
Cross-platform 8 6 5
Code refactoring and auto-completion 0 10 0
Testing 0 2 17
Documentation 0 2 15
Miscellaneous 7 4 9

within a peak actually describe problems mentioned in the poten-
tial users’churn). Again, both co-authors analyze and discuss every
analyzed sample.

In this RQ, we perform our analyses only in our studied projects
(as opposed to analyzing all the software alternatives in their do-
mains). As discussed in Section 3, it would be impracticable to
extract the data from all the different Issue Tracking Systems of the
software alternatives in the studied domains.
Findings:We respectively observe a cross-correlation of 0.76, 0.72,
and 0.70 in Firefox, Eclipse and Apache. These cross-correlation
scores indicate that there exist a global commonality between the
trends of the two time-series regardless of the timing factor.

Regarding our DTW analysis, we observe that the time from
the filing of an issue report to the time of a spark in potential
users’churn span from 2 to 4 weeks (on the median for the three
projects). Additionally, our DTW correlation reveals a bidirectional
relationship between the peaks in issue reports and the peaks in
potential users’churn. For the cases where a peak in issue reports
leads to a peak in potential users’churn, it is intuitive to think that
the peak in potential users’churn is due to the frustration generated
by the issues described in the reports. On the other hand, the cases
where a peak in potential users’churn is followed by a peak in
issue reports may occur due to users being frustrated over non-
obvious issues. For example, if we consider the potential user churn
depicted in Figure 3 (i.e., “Jupyter is slow on Firefox”), the users might
not find it obvious that such a problem should be reported to the
Firefox team (e.g., users may simply interpret it as a characteristic
of Firefox). Therefore, in such cases, issue reports would be filled
only a while after the potential users’churn have been expressed.

We are specifically interested in studying the relationship be-
tween reported issues (i.e., the documented issues in the tracker
systems) and the potential user churn. Our rationale is that under-
standing the characteristics of issues that are associated with user
churn can help developers to prioritize such issues and avoid future
churn (thereby, retaining more users).

Finally, Table 5 shows a subset of the examples found in our
manual analyses. We can indeed observe the apparent relationship
between the comments within the potential users’churn and the
descriptions (or titles) of issue reports. The examples are following
a unidirectional link, in which the issue report that occurs at a
certain time would induce the potential user churn at a later time.
Summary: Our results suggest that there exists a significant cor-
relation between software issues and potential user churn.

RQ2: Can we use machine learning models to
predict the rate of potential user churn?
Motivation: In the practice, most of the issue reports undergo hu-
man estimations of the priority and the severity [5], usually based
on internal business-oriented factors (such as ROI [25]). Issues
might be prioritized by their recency, the affected platforms, the
versions of the software where the issue is present. Feeding a ma-
chine learning model to identify the potential user churn that are
caused by issues may help automate the issue report prioritization
process and ultimately save huge costs in software development.
Approach: We train three different machine learning models to
predict low and high user churn rates by using information from is-
sue reports. The first model is a Feed-Forward Neural Network with
two hidden layers developed by using the framework Keras [17].
Keras is widely used to train simple neural networks as it has
a higher abstraction than TensorFlow [1]. Feed-Forward Neural
Networks [64] are the most suitable type of neural networks to
be trained on tabular data [27, 33, 50]. This network evaluates all
the possible combinations of different metrics values to guide the
predictions.

Our second model is the XGboost model, which is a gradient
boosting tree [12, 13]. XGboost is widely used for binary classifica-
tion problems. Research has shown that XGboost performs better
than neural networks and classic classification machine learning
algorithms in problems dealing with tabular data [14, 45, 69].

We also train Random Forest models [35]. Random Forest is
a classical machine learning algorithm which is widely used in
problems dealing with tabular data [26, 51, 57]. In addition, Ran-
dom Forest models have been widely used in software engineering
research, such as in defect prediction [67].

The goal of ourmodels is to predict the rate of potential users’churn
given the characteristics of issue reports. The data used to fit our
models is the data obtained from our DTW associations. Simply put,
the DTW provides us with 𝑃 pairs of issue reports 𝐼 and potential
users’churn 𝐶 (i.e., 𝑃 < 𝐼 ,𝐶 >). Therefore, we study the character-
istics of the issues 𝐼 to predict the amount of potential user churn
𝐶 . We split the distribution of 𝐶 into two percentiles (i.e., low and
high). The low percentile being from 0% to 50% and the high from
51% to 100%. Thus, our models output dichotomous predictions, i.e.,
whether the potential users’churn is low or high.

The characteristics of issue reports that we include in our models
(henceforth referred to as features) are described in Table 6. These
features are collected from the Issue Tracking systems of our three
studied projects. We study features such as Component, Hardware,
and OS to account for the locality and the spread of the issues.
For example, these features can indicate whether platform-specific
issues or more general issues have more potential user churn.

Other features, such as the Severity and Priority showcase the
prioritization used by developers. The Severity and Priority are
important for us to verify whether the prioritization performed by
developers is aligned with the rate of potential user churn.

Features related to the type of the bugs (i.e., whether it is a
crash), whether a version number is present, or the target milestone,
provide us information regarding the tracking process of issues.
They are important to understand whether better-tracked issues

7

shassan
Highlight

shassan
Highlight

shassan
Underline

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Underline

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MSR’20, October 5–6, 2020, Seoul, Republic of Korea Anonymous, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Manual investigation of DTW correlation linking

Firefox
Example 1
Correlation Linking Week 164 in issues to week 169 in switches (May 2018)
Issue Report Title Firefox version 53.0.3 appears high memory, high resources usage and might causing for SSD damages
Issue Description Mozilla Firefox it is caching all of this data 4-5GB on my new SSD and its lost 4% from its health within 5 months, due continuously writes/overwrites firefox cache on my SSD.
Altrnativeto Comment Switching to Chrome after version 53.0.3, high memory is damaging my SSD
Example 2
Correlation Linking Week 66 in issues to week 68 in switches (November 2016)
Issue Report Title Sessions are not cleared in the private window
Issue Description After closing private window (not a tab) and opening a new one I still logged in.
Altrnativeto Comment Chrome incognito functionality is more stable than Firefox, Firefox doesn’t resets sessions.

Eclipse
Example 1
Correlation Linking Week 10 in issues to week 11 in switches (July 2015)
Issue Report Title Not Java 8 Compatible
Issue Description When downloading Eclipse for the first time for Java development, 64-bit (which is what my computer is), it is not running because it is not compatible with Java version 8.

(which is the latest version of Java), but appears to be compatible with version 7 still -Dosgi.requiredJavaVersion=1.7
Altrnativeto Comment Using Netbeans because Eclipse is not installing.
Example 2
Correlation Linking Week 211 in issues to week 213 in switches (February 2019)
Issue Report Title jar files in the exported application do not contain class files
Issue Description The application has many plugins. It builds and runs well within eclipse, but when I export the application using the eclipse export product wizard, the jar files (corresponding to

the plugins) do not contain any class files! they include meta-inf, plugin.xml, and all the extra folders (eg lib, assets, etc, when available), but they do NOT contain any class files.
Altrnativeto Comment Didn’t find any problems in exporting jar (when recommending IntelliJ).

Apache
Example 1
Correlation Linking Week 113 in issues to week 117 in switches (July 2017)
Issue Report Title httpd 2.4.26 no longer building against lua 5.3.1 or lua 5.3.4
Issue Description Building Apache 2.4.26 against lua 5.3.1, or 5.3.4 compiled from scratch (latest version as of this writing) does not work. Compilation against lua 5.3.1 did work with 2.4.25.
Altrnativeto Comment Some issues while building with lua (when recommending XAMPP).
Example 2
Correlation Linking Week 12 in issues to week 13 in switches (September 2019)
Issue Report Title Apache Server is restarted time to time (Release 2.4.10)
Issue Description I am using Apache release 2.4.10 in Windows Server 2008. Time to time the Apache server is getting restarted. The service is unavailable for 3-5 minutes and after that the service

is started up automatically. This issue occurs frequently. twice a day, two days once etc..
Altrnativeto Comment XAMPP is more stable, I am experiencing random restarts throughout the day when using Apache.

Table 6: The issue reports attributes for Firefox, Eclipse and
Apache

Metric Description

Component consists of different components of the system such as bookmarks,
theme, toolbar, etc.

Status describes the status of the issue such as unconfirmed, open, re-
solved, etc.

Resolution describes the resolution type of the issue such as fixed, duplicate,
invalid, etc.

Severity the assigned severity such as blocker, critical, normal, etc.
Hardware the different hardware affected by the issue such as desktop, mobile,

32 or 64 bits, etc.
OS the different OS affected by the issue such as OSX, Windows, etc
Priority the assigned priority from 1 to 5
Type the assigned issue type such as defect, enhancement, or task
Time Alive the time difference between the date opened and the date resolved

in minutes
Time since last change the time difference between the date opened and the date of last

change in minutes
Is a Crash a boolean value to indicate if it is a crash report
Has a Version Number a boolean whether the issue report has a version number
Has a Target Milestone a boolean whether the issue report has a target number
Has a Regression Range a boolean value to indicate if the bug causes a regression testing
Number of comments the number of comments for the report
Number of votes the number of votes for the report, which validates the integrity of

the report by other users
Number of Blocks the number of issues that are blocked by that issue until it is re-

solved

(i.e., with more tracking information) are associated with potential
users’churn.

The number of comments, votes, and blocks showcase the effort
invested on discussing an issue. Finally, the time-alive and the time-
since-last-change are two features related to the life-cycle of an issue
report. Longer time-alive values indicate a lingering issue that has
not been resolved yet, while a short time-since-last-change values

indicate issues that have been recently addressed (and thus can still
be reoccurring).

Our studied features are inspired by previous research in soft-
ware engineering that have built machine learning models using
information present in issue reports [15, 16, 16, 18, 19, 29, 32, 39, 74].

We chose features that are common across the issue reports of
Firefox, Eclipse and Apache. We filtered out features that are unique
to an issue tracker system only to ensure a fair comparison between
our studied issue reports. Afterwards, we performed Spearman
correlation tests [44] on the selected features, in which each feature
is tested against the set of all the other features. We did not observe
any correlation obtaining a value higher than 0.7, which suggests
that our selected features are not correlated and can be safely fed
into our machine learning models [30].

To evaluate the performance of our models, we use the Area Un-
der the Curvemetric (AUC). AUC is useful for evaluating our models
because our models output probabilities. Therefore, AUC shows
the discrimination power of our models in every probability thresh-
old (unlike Precision, Recall, or F-measure, which are limited to
evaluating models at a single probability threshold [66]). The AUC
values range from 0 to 1. An AUC of 0.5 denotes a random guessing
model while an AUC of 1 denotes a perfect distinguishing power.
An AUC of 0 denotes a model with perfect inverse predictions.

Given the temporal nature of our data (i.e., future issue reports
cannot be used to predict the potential user churn of past issue
reports), we adopt a leave-one-out validation approach to obtain
our AUC values.

First, our issue reports have already been sorted when we per-
form the time-series analyses. Second, we split our data into two

8

shassan
Highlight

shassan
Underline

shassan
Underline

shassan
Underline

shassan
Highlight

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

On the Relationship between User Churn and Software Issues MSR’20, October 5–6, 2020, Seoul, Republic of Korea

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

sets: one containing 80% of the data, i.e., the training set and an-
other containing 20%, i.e., the validation set. In the first iteration
of our models, we use 80% of the data to train our models and we
use the first element of the validation set to test out models. Then,
the leave-one-out validation iteratively increases the training set
size by one element (from the validation set) and predicts the next
element of the validation set. This process is repeated until the
training set reaches the size of 𝑁 − 1 (where 𝑁 is the size of our
data set). Finally, our obtained AUC values are the aggregation
(i.e., median) of all the AUC values obtained in the leave-one-out
iterations.
Findings:TheAUC values obtained for our threemodels are shown
in our online appendix.8 The XGboost model performs the best in
the three studied projects, obtaining AUC values that exceed 0.83.
There exists a subtle difference between the AUC values of the
XGboost model and the Feed Forward Neural Networks AUCs,
since both the XGboost model and the Neural Networks can grasp
the complex relationships in our issue reports data.
Summary: Our results suggest that machine learning models, such
as XGboost and Feed Forward Neural Networks, can predict the
rate of user churn with relatively high accuracies (in terms of AUC).
Such predictions could help in the prioritization of issue reports.

RQ3: What are the most important factors
related to potential user churn?
Motivation: In RQ2, we observe that machine learning models
can be used to predict the rate of potential users’churn. However,
developers would hardly blindly trust a machine learning model
to help on their decisions (and they should not do so). Developers
would mostly benefit from understanding the reasons behind the
predictions of our machine learning models, so that they could
possibly adapt (or not) their development process. Therefore, in
RQ3, we investigate the most important features in the predictions
of our machine learning model.
Approach: In this RQ, we study the most important features in the
predictions of the XGboost models, since they obtain the best AUC
values in our three studied projects.

To find the most important features, we adopt a simple feature
extraction algorithm [61, 70]. Consider that our models are trained
on a feature set 𝑋 = 𝑥1, 𝑥2, ..., 𝑥𝑛 (as explained in RQ2). The feature
extraction process consists of iteratively (i) removing each feature 𝑥𝑖
from our models and (ii) computing the AUC without each feature
𝑥𝑖 (by using the same leave-one-out validation process explained
in RQ2). The AUC values from the models without a feature 𝑥𝑖 are
compared to the models containing all the features (i.e., we take
the difference 𝐴𝑈𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −𝐴𝑈𝐶𝑟𝑒𝑚𝑜𝑣𝑒𝑑). The higher the drop in
the AUC value caused by removing a certain feature 𝑥𝑖 , the higher
the importance of such a feature 𝑥𝑖 [4, 9, 10].
Findings: Table 7 shows our obtained results after performing the
feature extraction process. The table shows the drop in the AUC for
each feature (i.e., ΔAUC). We also show the minimum, maximum,
mean, and median values of the features in the 𝑙𝑜𝑤 user churn rate
(i.e., 0) and ℎ𝑖𝑔ℎ user churn rate (i.e., 1) prediction classes.

8https://doi.org/10.5281/zenodo.3610584

The Issue Alive Time is the most important feature, obtaining the
highest ΔAUC in our three studied projects. This result suggests
that it is unhealthy to leave issues hanging for a long time as they
can be perceived as a reason for users to churn.

The Number of Comments obtains a considerable ΔAUC in our
three studied systems. The association between the Number of
Comments and the rate of user churnmay occur due to themultitude
number of users being affected by an issue.

The Time-since-last-change is also an important feature in the
Firefox and Eclipse projects. This result suggests that issues with
recurring changes or modifications may signal a certain instability
in the fixing process, which might cause a potential user churn in
the future.

It is worthy noting that features, such as Severity, Priority, and
Type of Bugs do not obtain a high importance in the predictions,
which might suggest that the existing prioritization fields used in
issue reports are misaligned with the potential user churn.
Summary:Our results suggest that long lived issues can potentially
lead to more potential user’s churn and that the existing processes
for prioritizing issues should be augmented to capture the highly
interactive and long lived issues.

5 THREATS TO VALIDITY
Construct Validity: The main construct validity of our study is
related to the assumption of a potential user churn. The alterna-
tiveto.net website does not record exactly when a user has chosen a
software alternative over another software. Instead, alternativeto.net
records that a user thinks that a software may be a good alternative
to another software. The motivation behind the act of signaling an
alternative is not known by us. For example, there might be users
that are simply driven by the passion of contributing to the alterna-
tiveto.net community, which lead them to provide several opinions
as to which software could make good alternatives to others. We
have deliberately adopted the term potential user churn instead of
simply user churn due to this unknown motivations behind signal-
ing alternatives. Moreover, it is reasonable to think that if a given
software has received a considerable amount of recommendation
for alternatives, this may likely indeed represent that users are
considering to change the software.

Internal Validity: Our internal threats to validity are mainly
related to (i) our chosen features and (ii) our prediction classes. We
split the peaks of potential user churn into the low and high classes.
Other research may find different results if the potential user churn
is modeled in different way. In addition, we acknowledge that our
set of metrics is not exhaustive. For example, we have not studied
whether the presence of a stack-trace in an issue report can be
related to future potential user churn. We plan to (i) model the
potential user churn as a continuous variable and (ii) extend our set
of features to predict the potential user churn in future research.

External Validity: Our study targeted three domains that are
web servers, IDEs and web browsers. These three domains were
chosen due to their availability, since we could fetch their issue
reports data. Although our study showed common factors in our
analyses, we cannot generalize our results to other domains or
projects with a different scale (i.e., smaller projects). Regardless, our
work provides insights of the possible reasons behind user churn.

9

https://doi.org/10.5281/zenodo.3610584
shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MSR’20, October 5–6, 2020, Seoul, Republic of Korea Anonymous, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 7: The most important features for Firefox, Eclipse, and Apache ranked by their drop in AUC

Factor ΔAUC Min 0 Max 0 Mean 0 Median 0 Min 1 Max 1 Mean 1 Median 1

Firefox
Time Alive 0.13 0 120 11.02 13 10 1487 48.72 63
OS All 0.07 0 1 0.14 0 0 1 0.83 1
Number of Comments 0.06 1 65 8.94 12 1 458 28.11 45
Time Since Last Change 0.06 9 30 10.90 22 0 5 4.10 3
Has a Target Milestone 0.05 0 1 0.22 0 0 1 0.79 1
Has a Version Number 0.04 0 1 0.33 0 0 1 0.64 1
Component UI Web Payments 0.03 0 1 0.42 0 0 1 0.61 1

Eclipse
Time Alive 0.12 0 103 9.01 12 8 1334 43.96 49
Has a Target Milestone 0.06 0 1 0.19 0 0 1 0.82 1
Time since last change 0.06 7 27 8.51 19 0 6 3.12 3
Has a Version Number 0.05 0 1 0.34 0 0 1 0.77 1
Component Debug 0.04 0 1 0.47 0 0 1 0.72 1
Number of Comments 0.03 1 72 10.92 11 1 632 27.01 72
OS All 0.02 0 1 0.50 0 0 1 0.68 1

Apache
Time Alive 0.14 0 136 11.32 14 14 1521 53.10 70
Component Utils 0.10 0 1 0.22 0 0 1 0.91 1
Has a Version Number 0.09 0 1 0.38 0 0 1 0.86 1
Number of Comments 0.05 1 92 12.32 6 1 352 42.07 79
OS All 0.04 0 1 0.33 0 0 1 0.79 1
Status REOPENED 0.03 0 1 0.40 0 0 1 0.73 1
Hardware All 0.02 0 1 0.51 0 0 1 0.78 1

6 RELATEDWORK
Given that we study the relationship between potential user churn
and issue reports, our research is related to the areas of user/customer
churn and software quality. Therefore, we survey the related re-
search around these two areas in this section.

User/CustomerChurn.User or customer churn has beenwidely
studied in the area of telecommunication services [3, 28, 71]. Amin
et al. [3] proposed a cross-company machine learning model to
predict customer churn. The authors also propose the use of data
transformation (e.g., by using the log function) to improve the train-
ing data. Ullah et al. [71] used feature selection techniques, such as
Information Gain and Correlation Attributes Ranking Filter to select
which features better explained the churn behaviour of different
customer groups. The authors observed that a Random Forest model
performed the best in their study. While the Business to Customers
(B2C) churn has been widely studied, Figalist et al. [28] recently
investigated the Business to Business (B2B) churn, i.e., when the
customer business changes shifts to the services provided by the
competition. Figalist et al. [28] allude that although B2B relation-
ships tend to be more stable, they have a much bigger financial im-
pact when they change. In terms of software engineering, there has
been a lack of studies that have investigated user/costumer churn
directly. Instead, much research has been invested on customer
reviews regarding software products [6, 46, 47]. Noei et al. [46]
studied which features from mobile apps are associated with better
ranks in the Google Play store. While the work by Noei et al. [46]
does not study the customer churn directly, striving for better ranks
in Google Play may avoid user churn in mobile apps. Bavota et
al. [6] investigated the relationship between the usage of fault- and
change-prone APIs in Android apps and user reviews. Differently
from all the aforementioned work, our study investigates the user
churn is software products.

Software Quality. Although there exist a lack of studies ana-
lyzing the user churn of software products/services, there has been
a considerable amount of research on software quality [5, 34, 39, 66,
67, 74]. Research on software quality is important, since a quality

software is more stable and less defect-prone. Ultimately, such char-
acteristics are tightly related to the observations of our study(i.e.,
software issues are correlated with user churn). A prominent area
of software quality research in software engineering is the defect
prediction area [66, 67]. Tantithamthavorn et al. [66] studied how
much improvement can be obtained by automatically optimizing
defect prediction models. Their research shows that automatic op-
timization can yield significant or insignificant performance gains
depending on the machine learning algorithm. Other considerable
amount of research has been invested on the triaging part of issue
reports [5] and on the effort estimation of an issue report (in terms
of time to address an issue) [39, 74]. In this paper, we complement
prior research by studying the relationship shared between issue
reports (e.g., defects or required enhancements) with the potential
user churn of users.

7 CONCLUSION
In this work, we study the data available on alternativeto.net to
better understand the relationship between software issues and the
potential user churn of users. Having observed that user concerns
are tightly related to software issues (e.g., bugs), we investigate
the relationship between issue reports and the potential user churn
of users. Our study reveals key issues that must be addressed for
the success of a software product (depending on the domain). For
example, we observe that the potential user churn of users may be
tightly related to the lack of a robust documentation and support for
testing tools (in the “IDE” and “Web Server” domains). Finally, our
machine learning models reveal that (i) the longer the issue takes to
be fixed, the higher the chances of user churn; and (ii) issues within
more general software components are more likely to be associated
with user churn. Finally, we suggest that the current prioritization
performed by developers should be augmented to encompass the
long lived and highly interactive issues. In overall, our study sug-
gests that the prioritization process of issues can be improved by
considering the potential user churn of users associated with such
issues.

10

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

shassan
Highlight

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

On the Relationship between User Churn and Software Issues MSR’20, October 5–6, 2020, Seoul, Republic of Korea

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16). 265–283.

[2] W Abdelmoez, Mohamed Kholief, and Fayrouz M Elsalmy. 2012. Bug fix-time pre-
diction model using naïve bayes classifier. In 2012 22nd International Conference
on Computer Theory and Applications (ICCTA). IEEE, 167–172.

[3] Adnan Amin, Babar Shah, Asad Masood Khattak, Thar Baker, and Sajid Anwar.
2018. Just-in-time customer churn prediction: with and without data transforma-
tion. In 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1–6.

[4] Hafeez Ullah Amin, Aamir Saeed Malik, Rana Fayyaz Ahmad, Nasreen Badruddin,
Nidal Kamel, Muhammad Hussain, and Weng-Tink Chooi. 2015. Feature extrac-
tion and classification for EEG signals using wavelet transform and machine
learning techniques. Australasian physical & engineering sciences in medicine 38,
1 (2015), 139–149.

[5] John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who should fix this bug?.
In Proceedings of the 28th international conference on Software engineering. ACM,
361–370.

[6] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Mas-
similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2014. The impact
of api change-and fault-proneness on the user ratings of android apps. IEEE
Transactions on Software Engineering 41, 4 (2014), 384–407.

[7] Pamela Bhattacharya and Iulian Neamtiu. 2011. Bug-fix time prediction models:
can we do better?. In Proceedings of the 8thWorking Conference on Mining Software
Repositories. ACM, 207–210.

[8] Steven Bird and Edward Loper. 2004. NLTK: the natural language toolkit. In
Proceedings of the ACL 2004 on Interactive poster and demonstration sessions.
Association for Computational Linguistics, 31.

[9] Andrew P Bradley. 1997. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern recognition 30, 7 (1997),
1145–1159.

[10] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[11] Albert Caruana and Michael T Ewing. 2010. How corporate reputation, quality,

and value influence online loyalty. Journal of Business Research 63, 9-10 (2010),
1103–1110.

[12] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 785–794.

[13] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, and Yuan Tang. 2015.
Xgboost: extreme gradient boosting. R package version 0.4-2 (2015), 1–4.

[14] Wenbin Chen, Kun Fu, Jiawei Zuo, Xinwei Zheng, Tinglei Huang, and Wenjuan
Ren. 2017. Radar emitter classification for large data set based on weighted-
xgboost. IET Radar, Sonar & Navigation 11, 8 (2017), 1203–1207.

[15] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. 2015.
Predicting delays in software projects using networked classification (t). In 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 353–364.

[16] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose, and John
Grundy. 2017. Predicting delivery capability in iterative software development.
IEEE Transactions on Software Engineering 44, 6 (2017), 551–573.

[17] François Chollet. 2017. Keras.
[18] Daniel Alencar Da Costa, Shane McIntosh, Uirá Kulesza, Ahmed E Hassan, and

Surafel Lemma Abebe. 2018. An empirical study of the integration time of fixed
issues. Empirical Software Engineering 23, 1 (2018), 334–383.

[19] Daniel Alencar da Costa, Shane McIntosh, Christoph Treude, Uirá Kulesza, and
Ahmed E Hassan. 2018. The impact of rapid release cycles on the integration
delay of fixed issues. Empirical Software Engineering 23, 2 (2018), 835–904.

[20] Piew Datta, Brij Masand, Deepak R Mani, and Bin Li. 2000. Automated cellular
modeling and prediction on a large scale. Artificial Intelligence Review 14, 6 (2000),
485–502.

[21] Kushal S Dave, Vishal Vaingankar, Sumanth Kolar, and Vasudeva Varma. 2013.
Timespent based models for predicting user retention. In Proceedings of the 22nd
international conference on World Wide Web. ACM, 331–342.

[22] William H DeLone and Ephraim R McLean. 1992. Information systems success:
The quest for the dependent variable. Information systems research 3, 1 (1992),
60–95.

[23] William H DeLone and Ephraim R McLean. 2003. Model of information systems
success: a ten years update. Journal of Management (2003).

[24] Gideon Dror, Dan Pelleg, Oleg Rokhlenko, and Idan Szpektor. 2012. Churn
prediction in new users of Yahoo! answers. In Proceedings of the 21st International
Conference on World Wide Web. ACM, 829–834.

[25] Khaled El Emam. 2005. The ROI from software quality. Auerbach Publications.
[26] Katherine Ellis, Jacqueline Kerr, Suneeta Godbole, Gert Lanckriet, David Wing,

and Simon Marshall. 2014. A random forest classifier for the prediction of energy

expenditure and type of physical activity from wrist and hip accelerometers.
Physiological measurement 35, 11 (2014), 2191.

[27] David Enke and Suraphan Thawornwong. 2005. The use of datamining and neural
networks for forecasting stock market returns. Expert Systems with applications
29, 4 (2005), 927–940.

[28] Iris Figalist, Christoph Elsner, Jan Bosch, and Helena Holmström Olsson. 2019.
Customer churn prediction in B2B contexts. In International Conference on Soft-
ware Business. Springer, 378–386.

[29] Emanuel Giger, Martin Pinzger, and Harald Gall. 2010. Predicting the fix time
of bugs. In Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering. ACM, 52–56.

[30] Frank E Harrell Jr. 2015. Regression modeling strategies: with applications to linear
models, logistic and ordinal regression, and survival analysis. Springer.

[31] Steffen Hedegaard and Jakob Grue Simonsen. 2013. Extracting usability and user
experience information from online user reviews. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2089–2098.

[32] Yujuan Jiang, Bram Adams, and Daniel M German. 2013. Will my patch make it?
and how fast?: Case study on the linux kernel. In Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 101–110.

[33] Guolin Ke, Jia Zhang, Zhenhui Xu, Jiang Bian, and Tie-Yan Liu. 2019. TabNN:
a universal neural network solution for tabular data. https://openreview.net/
forum?id=r1eJssCqY7

[34] Foutse Khomh, Brian Chan, Ying Zou, and Ahmed E Hassan. 2011. An entropy
evaluation approach for triaging field crashes: A case study of mozilla firefox. In
Reverse Engineering (WCRE), 2011 18th Working Conference on. IEEE, 261–270.

[35] Andy Liaw and Matthew Wiener. 2002. Classification and regression by random
forest. R news 2, 3 (2002), 18–22.

[36] Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina Lopes, and Pierre Baldi.
2007. Mining eclipse developer contributions via author-topic models. In Fourth
International Workshop on Mining Software Repositories (MSR’07: ICSE Workshops
2007). IEEE, 30–30.

[37] Xi Long, Wenjing Yin, Le An, Haiying Ni, Lixian Huang, Qi Luo, and Yan Chen.
2012. Churn analysis of online social network users using data mining techniques.
In Proceedings of the international MultiConference of Engineers and Conputer
Scientists, Vol. 1.

[38] James MacQueen. 1967. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[39] Lionel Marks, Ying Zou, and Ahmed E Hassan. 2011. Studying the fix-time
for bugs in large open source projects. In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering. ACM, 11.

[40] Andrew Kachites McCallum. 2002. Mallet: A machine learning for language
toolkit. (2002).

[41] Miloš Milošević, Nenad Živić, and Igor Andjelković. 2017. Early churn predic-
tion with personalized targeting in mobile social games. Expert Systems with
Applications 83 (2017), 326–332.

[42] Audris Mockus, Roy T Fielding, and James Herbsleb. 2000. A case study of
open source software development: the Apache server. In Proceedings of the 22nd
international conference on Software engineering. Acm, 263–272.

[43] Gustavo Percio Zimmermann Montesdioca and Antônio Carlos Gastaud Maçada.
2015. Measuring user satisfaction with information security practices. Computers
& Security 48 (2015), 267–280.

[44] Leann Myers and Maria J Sirois. 2004. Spearman correlation coefficients, differ-
ences between. Encyclopedia of statistical sciences 12 (2004).

[45] Didrik Nielsen. 2016. Tree boosting with XGBoost-why does XGBoost win" Every"
Machine Learning Competition? Master’s thesis. NTNU.

[46] Ehsan Noei, Daniel Alencar Da Costa, and Ying Zou. 2018. Winning the app
production rally. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 283–294.

[47] Ehsan Noei, Feng Zhang, Shaohua Wang, and Ying Zou. 2019. Towards pri-
oritizing user-related issue reports of mobile applications. Empirical Software
Engineering 24, 4 (2019), 1964–1996.

[48] Ehsan Noei, Feng Zhang, and Ying Zou. 2019. Too Many User-Reviews, What
Should App Developers Look at First? IEEE Transactions on Software Engineering
(2019).

[49] Derek O’callaghan, Derek Greene, Joe Carthy, and Pádraig Cunningham. 2015.
An analysis of the coherence of descriptors in topic modeling. Expert Systems
with Applications 42, 13 (2015), 5645–5657.

[50] Ya A Pachepsky, Dennis Timlin, and GY Varallyay. 1996. Artificial neural net-
works to estimate soil water retention from easily measurable data. Soil Science
Society of America Journal 60, 3 (1996), 727–733.

[51] Mahesh Pal. 2005. Random forest classifier for remote sensing classification.
International Journal of Remote Sensing 26, 1 (2005), 217–222.

[52] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio,
Gerardo Canfora, and Harald C Gall. 2015. How can i improve my app? classifying
user reviews for software maintenance and evolution. In Software maintenance
and evolution (ICSME), 2015 IEEE international conference on. IEEE, 281–290.

11

https://openreview.net/forum?id=r1eJssCqY7
https://openreview.net/forum?id=r1eJssCqY7

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

MSR’20, October 5–6, 2020, Seoul, Republic of Korea Anonymous, et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[53] Chitra Phadke, Huseyin Uzunalioglu, Veena B Mendiratta, Dan Kushnir, and
Derek Doran. 2013. Prediction of subscriber churn using social network analysis.
Bell Labs Technical Journal 17, 4 (2013), 63–76.

[54] Peter C Rigby, Daniel M German, and Margaret-Anne Storey. 2008. Open source
software peer review practices: a case study of the apache server. In Proceedings
of the 30th international conference on Software engineering. ACM, 541–550.

[55] Martin P Robillard and Robert Deline. 2011. A field study of API learning obstacles.
Empirical Software Engineering 16, 6 (2011), 703–732.

[56] Michael Röder, Andreas Both, and Alexander Hinneburg. 2015. Exploring the
space of topic coherence measures. In Proceedings of the eighth ACM international
conference on Web search and data mining. ACM, 399–408.

[57] Victor Francisco Rodriguez-Galiano, Bardan Ghimire, John Rogan, Mario Chica-
Olmo, and Juan Pedro Rigol-Sanchez. 2012. An assessment of the effectiveness
of a random forest classifier for land-cover classification. ISPRS Journal of Pho-
togrammetry and Remote Sensing 67 (2012), 93–104.

[58] Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic programming algorithm opti-
mization for spoken word recognition. IEEE transactions on acoustics, speech, and
signal processing 26, 1 (1978), 43–49.

[59] Stan Salvador and Philip Chan. 2007. Toward accurate dynamic time warping in
linear time and space. Intelligent Data Analysis 11, 5 (2007), 561–580.

[60] Peter B Seddon. 1997. A respecification and extension of the DeLone and McLean
model of IS success. Information systems research 8, 3 (1997), 240–253.

[61] Rudy Setiono, Bart Baesens, and Christophe Mues. 2008. Recursive neural net-
work rule extraction for data with mixed attributes. IEEE Transactions on Neural
Networks 19, 2 (2008), 299–307.

[62] Dong-Hee Shin. 2015. Effect of the customer experience on satisfaction with
smartphones: Assessing smart satisfaction index with partial least squares.
Telecommunications Policy 39, 8 (2015), 627–641.

[63] Tom De Smedt and Walter Daelemans. 2012. Pattern for python. Journal of
Machine Learning Research 13, Jun (2012), 2063–2067.

[64] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. 1997. Introduction to multi-
layer feed-forward neural networks. Chemometrics and intelligent laboratory
systems 39, 1 (1997), 43–62.

[65] Shaheen Syed and Marco Spruit. 2017. Full-text or abstract? Examining topic
coherence scores using latent dirichlet allocation. In 2017 IEEE International
conference on data science and advanced analytics (DSAA). IEEE, 165–174.

[66] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2016. Automated parameter optimization of classification techniques
for defect prediction models. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE, 321–332.

[67] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2018. The impact of automated parameter optimization on defect
prediction models. IEEE Transactions on Software Engineering (2018).

[68] Romain Tavenard. 2017. tslearn: A machine learning toolkit dedicated to time-
series data. https://github.com/rtavenar/tslearn.

[69] L Torlay, Marcela Perrone-Bertolotti, Elizabeth Thomas, and Monica Baciu. 2017.
Machine learning–XGBoost analysis of language networks to classify patients
with epilepsy. Brain informatics 4, 3 (2017), 159.

[70] Geoffrey G Towell and Jude W Shavlik. 1993. Extracting refined rules from
knowledge-based neural networks. Machine learning 13, 1 (1993), 71–101.

[71] Irfan Ullah, Basit Raza, Ahmad Kamran Malik, Muhammad Imran, Saif Ul Islam,
and SungWon Kim. 2019. A churn prediction model using random forest: analysis
of machine learning techniques for churn prediction and factor identification in
telecom sector. IEEE Access 7 (2019), 60134–60149.

[72] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massimil-
iano Di Penta. 2016. Release planning of mobile apps based on user reviews. In
Proceedings of the 38th International Conference on Software Engineering. ACM,
14–24.

[73] Chih-Ping Wei and I-Tang Chiu. 2002. Turning telecommunications call details
to churn prediction: a data mining approach. Expert systems with applications 23,
2 (2002), 103–112.

[74] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. 2007.
How long will it take to fix this bug?. In Fourth International Workshop on Mining
Software Repositories (MSR’07: ICSE Workshops 2007). IEEE, 1–1.

[75] Ian H Witten, Eibe Frank, and A Mark. 2016. Hall, and Christopher J Pal. Data
Mining: Practical machine learning tools and techniques (2016).

[76] Barbara H Wixom and Peter A Todd. 2005. A theoretical integration of user
satisfaction and technology acceptance. Information systems research 16, 1 (2005),
85–102.

[77] Jae-Chern Yoo and Tae Hee Han. 2009. Fast normalized cross-correlation. Circuits,
systems and signal processing 28, 6 (2009), 819.

12

https://github.com/rtavenar/tslearn

	Abstract
	1 Introduction
	2 Motivating Example
	3 Data Collection
	4 Research Questions & Results
	5 Threats To Validity
	6 Related Work
	7 Conclusion
	References

